
Outline

Redundancy Elimination



Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6' b ∨ b 6' c ∨ f (c, c) ' f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.



Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6' b ∨ b 6' c ∨ f (c, c) ' f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.



Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6' b ∨ b 6' c ∨ f (c, c) ' f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.



Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.



Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.



Bag Extension of an Ordering

Bag = finite multiset.
Let > be any ordering on a set X . The bag extension of > is a binary
relation >bag , on bags over X , defined as the smallest transitive
relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.

Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .



Bag Extension of an Ordering

Bag = finite multiset.
Let > be any ordering on a set X . The bag extension of > is a binary
relation >bag , on bags over X , defined as the smallest transitive
relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.
Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.

The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .



Bag Extension of an Ordering

Bag = finite multiset.
Let > be any ordering on a set X . The bag extension of > is a binary
relation >bag , on bags over X , defined as the smallest transitive
relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.
Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .



Clause Orderings

From now on consider clauses also as bags of literals. Note:

I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence

I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.



Clause Orderings

From now on consider clauses also as bags of literals. Note:

I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence

I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.



Clause Orderings

From now on consider clauses also as bags of literals. Note:

I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence

I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.



Redundancy

A clause C ∈ S is called redundant in S if it is a logical consequence
of clauses in S strictly smaller than C.



Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.

We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.



Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.
We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.



Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.
We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.



Redundant Clauses Can be Removed

In BRσ (and in all calculi we will consider later) redundant clauses
can be removed from the search space.



Redundant Clauses Can be Removed

In BRσ (and in all calculi we will consider later) redundant clauses
can be removed from the search space.



Inference Process with Redundancy

Let I be an inference system. Consider an inference process with two
kinds of step Si ⇒ Si+1:

1. Adding the conclusion of an I-inference with premises in Si .
2. Deletion of a clause redundant in Si , that is

Si+1 = Si − {C},

where C is redundant in Si .



Fairness: Persistent Clauses and Limit

Consider an inference process

S0 ⇒ S1 ⇒ S2 ⇒ . . .

A clause C is called persistent if

∃i∀j ≥ i(C ∈ Sj).

The limit Sω of the inference process is the set of all persistent
clauses:

Sω =
⋃

i=0,1,...

⋂
j≥i

Sj .



Fairness

The process is called I-fair if every inference with persistent premises
in Sω has been applied, that is, if

C1 . . . Cn

C

is an inference in I and {C1, . . . ,Cn} ⊆ Sω, then C ∈ Si for some i .



Completeness of Sup�,σ

Completeness Theorem. Let � be a simplification ordering and σ a
well-behaved selection function. Let also

1. S0 be a set of clauses;
2. S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair Sup�,σ-inference process.

Then S0 is unsatisfiable if and only if � ∈ Si for some i .



Saturation up to Redundancy

A set S of clauses is called saturated up to redundancy if for every
I-inference

C1 . . . Cn

C

with premises in S, either

1. C ∈ S; or
2. C is redundant w.r.t. S, that is, S≺C |= C.



Proof of Completeness

A trace of a clause C: a set of clauses {C1, . . . ,Cn} ⊆ Sω such that

1. C � Ci for all i = 1, . . . ,n;
2. C1, . . . ,Cn |= C.

Lemma. Every removed clause has a trace.
Lemma. The limit Sω is saturated up to redundancy.
Lemma. The limit Sω is logically equivalent to the initial set S0.
Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Interestingly, only the last lemma uses rules of BRσ.



Proof of Completeness

A trace of a clause C: a set of clauses {C1, . . . ,Cn} ⊆ Sω such that

1. C � Ci for all i = 1, . . . ,n;
2. C1, . . . ,Cn |= C.

Lemma. Every removed clause has a trace.
Lemma. The limit Sω is saturated up to redundancy.
Lemma. The limit Sω is logically equivalent to the initial set S0.
Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Interestingly, only the last lemma uses rules of BRσ.



Binary Resolution with Selection

One of the key properties to satisfy this lemma is the following: the
conclusion of every rule is strictly smaller that the rightmost premise
of this rule.

I Binary resolution,

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring,

p ∨ p ∨ C

p ∨ C
(Fact).



Saturation up to Redundancy and Satisfiability
Checking

Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.



Saturation up to Redundancy and Satisfiability
Checking

Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.



Saturation up to Redundancy and Satisfiability
Checking

Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.


	Redundancy Elimination

