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Redundancy Elimination



Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6' b ∨ b 6' c ∨ f (c, c) ' f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.
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Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.
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Bag Extension of an Ordering

Bag = finite multiset.
Let > be any ordering on a set X . The bag extension of > is a binary
relation >bag , on bags over X , defined as the smallest transitive
relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.

Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .
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Clause Orderings

From now on consider clauses also as bags of literals. Note:

I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence

I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.
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Redundancy

A clause C ∈ S is called redundant in S if it is a logical consequence
of clauses in S strictly smaller than C.



Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.

We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.
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Redundant Clauses Can be Removed

In BRσ (and in all calculi we will consider later) redundant clauses
can be removed from the search space.
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Inference Process with Redundancy

Let I be an inference system. Consider an inference process with two
kinds of step Si ⇒ Si+1:

1. Adding the conclusion of an I-inference with premises in Si .
2. Deletion of a clause redundant in Si , that is

Si+1 = Si − {C},

where C is redundant in Si .



Fairness: Persistent Clauses and Limit

Consider an inference process

S0 ⇒ S1 ⇒ S2 ⇒ . . .

A clause C is called persistent if

∃i∀j ≥ i(C ∈ Sj).

The limit Sω of the inference process is the set of all persistent
clauses:

Sω =
⋃

i=0,1,...

⋂
j≥i

Sj .



Fairness

The process is called I-fair if every inference with persistent premises
in Sω has been applied, that is, if

C1 . . . Cn

C

is an inference in I and {C1, . . . ,Cn} ⊆ Sω, then C ∈ Si for some i .



Completeness of Sup�,σ

Completeness Theorem. Let � be a simplification ordering and σ a
well-behaved selection function. Let also

1. S0 be a set of clauses;
2. S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair Sup�,σ-inference process.

Then S0 is unsatisfiable if and only if � ∈ Si for some i .



Saturation up to Redundancy

A set S of clauses is called saturated up to redundancy if for every
I-inference

C1 . . . Cn

C

with premises in S, either

1. C ∈ S; or
2. C is redundant w.r.t. S, that is, S≺C |= C.



Proof of Completeness

A trace of a clause C: a set of clauses {C1, . . . ,Cn} ⊆ Sω such that

1. C � Ci for all i = 1, . . . ,n;
2. C1, . . . ,Cn |= C.

Lemma. Every removed clause has a trace.
Lemma. The limit Sω is saturated up to redundancy.
Lemma. The limit Sω is logically equivalent to the initial set S0.
Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Interestingly, only the last lemma uses rules of BRσ.
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Binary Resolution with Selection

One of the key properties to satisfy this lemma is the following: the
conclusion of every rule is strictly smaller that the rightmost premise
of this rule.

I Binary resolution,

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring,

p ∨ p ∨ C

p ∨ C
(Fact).



Saturation up to Redundancy and Satisfiability
Checking

Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.
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