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Unification and Lifting



Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =
{

ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement
of xi by ti .

I Application of a substitution θ to E is denoted by Eθ.
I Since substitutions are functions, we can define their composition

(written στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .



Exercise

Exercise: Suppose we have two substitutions

{x1 7→ s1, . . . , xm 7→ sm} and
{y1 7→ t1, . . . , yn 7→ tn}.

How can we write their composition using the same notation?



Instances, Ground

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.



Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem Let S be a set of clauses. The following conditions are
equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

By compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking unsatisfiability of sets
of arbitrary clauses to checking unsatisfiability of sets of ground
clauses . . .
The only problem is that S∗ can be infinite even if S is finite.
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Note on Herbrand’s Theorem, Compactness and
Completeness

The proofs of completeness of resolution and superposition with
redundancy elimination does not use any of these theorems.

Interestingly, they all can be derived as simple corollaries of this proof
of completeness!
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Lifting

Lifting is a technique for proving completeness theorems in the
following way:

1. Prove completeness of the system for a set of ground clauses;
2. Lift the proof to the non-ground case.



Lifting, Example

Consider two (non-ground) clauses p(x ,a) ∨ q1(x) and
¬p(y , z) ∨ q2(y , z). If the signature contains function symbols, then
both clauses have infinite sets of instances:

{p(r ,a) ∨ q1(r) | r is ground}
{¬p(s, t) ∨ q2(s, t) | s, t are ground}

We can resolve such instances if and only if r = s and t = a. Then we
can apply the following inference

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)
q1(s) ∨ q2(s,a)

(BR)

But there is an infinite number of such inferences.



Lifting, Idea

The idea is to represent an infinite number of ground inferences of the
form

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)
q1(s) ∨ q2(s,a)

(BR)

by a single non-ground inference

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)
q1(y) ∨ q2(y ,a)

(BR)

Is this always possible?



Yes!

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)
q1(y) ∨ q2(y ,a)

(BR)

Note that the substitution {x 7→ y , z 7→ a} is a solution of the
“equation” p(x ,a) = p(y , z).



What should we lift?

I Ordering �;
I Selection function σ;
I Calculus Sup�,σ.

Most importantly, for the lifting to work we should be able to solve
equations s = t between terms and between atoms. This can be
done using most general unifiers.



Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.
In other words, a unifier is a solution to an “equation” s1 = s2. In a
similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n. We call such solutions simultaneous unifiers of
s1, . . . , sn and s′1, . . . , s

′
n.



(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general
solution if for every other solution σ there exists a substitution τ such
that θτ = σ. In a similar way can define a most general unifier.

Consider terms f (x1,g(x1), x2) and f (y1, y2, y2).
(Some of) their unifiers are
θ1 = {y1 7→ x1, y2 7→ g(x1), x2 7→ g(x1)} and
θ2 = {y1 7→ a, y2 7→ g(a), x2 7→ g(a), x1 7→ a}:

f (x1,g(x1), x2)θ1 = f (x1,g(x1),g(x1));
f (y1, y2, y2)θ1 = f (x1,g(x1),g(x1));
f (x1,g(x1), x2)θ2 = f (a,g(a),g(a));
f (y1, y2, y2)θ2 = f (a,g(a),g(a)).
But only θ1 is most general.
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Unification
Let E be a set of equations. An isolated equation in E is any equation x = t in it such
that x has exactly one occurrence in E .

input:
A finite set of equations E

output:
A solution to E or failure.

begin
while there exists a non-isolated equation (s = t) ∈ E
do

case (s, t) of
(t , t) ⇒ Remove this equation from E
(x , t) ⇒

if x occurs in t
then halt with failure
else replace x by t in all other equations of E

(t , x) ⇒ replace this equation by x = t
and do the same as in the case (x , t)

(c, d) ⇒ halt with failure
(c, f (t1, . . . , tn)) ⇒ halt with failure
(f (t1, . . . , tn), c) ⇒ halt with failure
(f (s1, . . . , sm), g(t1, . . . , tn)) ⇒ halt with failure
(f (s1, . . . , sn), f (t1, . . . , tn)) ⇒ replace this equation by the set

s1 = t1, . . . , sn = tn
end

od
Now E has the form {x1 = r1, . . . , xl = rl} and every equation in it
is isolated
return the substitution {x1 7→ r1, . . . , xl 7→ rl}

end



Examples

{h(g(f (x),a)) = h(g(y , y))}
{h(f (y), y , f (z)) = h(z, f (x), x)}
{h(g(f (x), z)) = h(g(y , y))}



Properties

Theorem Suppose we run the unification algorithm on s = t . Then

I If s and t are unifiable, then the algorithms terminates and
outputs a most general unifier of s and t .

I If s and t are not unifiable, then the algorithms terminates with
failure.

Notation (slightly ambiguous):

I mgu(s, t) for a most general unifier;
I mgs(E) for a most general solution.



Exercise

Consider a trivial system of equations {} or {a = a}.
What is the set of solutions to it?
What is the set of most general solutions to it?



Properties

Theorem Let C be a clause and E a set of equations. Then

{D ∈ C∗ | ∃θ(Cθ = D and θ is a solution to E)} = (Cmgs(E))∗.

In other words, to find a set of ground instances of a clause C that
also satisfy an equation E , take the most general solution σ of E and
use ground instances of Cσ.



Non-Ground Superposition Rule
Superposition:

l = r ∨ C s[l ′] = t ∨ D

(s[r ] = t ∨ C ∨ D)θ
(Sup),

l = r ∨ C s[l ′] 6= t ∨ D

(s[r ] 6= t ∨ C ∨ D)θ
(Sup),

where

1. θ is an mgu of l and l ′;
2. l ′ is not a variable;
3. rθ 6� lθ;
4. tθ 6� s[l ′]θ.
5. . . .

Observations:
I ordering is partial, hence conditions like rθ 6� lθ;
I these conditions must be checked a posteriori, that is, after the

rule has been applied.
Note, however, that l � r implies lθ � rθ, so checking orderings a
priory helps.
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More rules

Equality Resolution:

s 6= s′ ∨ C

Cθ
(ER),

where θ is an mgu of s and s′.
Equality Factoring:

l = r ∨ l ′ = r ′ ∨ C
(l = r ∨ r 6= r ′ ∨ C)θ

(EF),

where θ is an mgu of l and l ′, rθ 6� lθ, r ′θ 6� lθ, and r ′θ 6� rθ.
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