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Literal, Clause

» Literal: either an atom p (positive literal) or its negation —p
(negative literal).

» The complementary literal to L:

7 gt —L, if Lis positive;
| p, if Lhasthe form —p.
In other words, p and —p are complementary.

» Clause: a disjunction Ly vV ...V L,, n > 0 of literals.

» Empty clause, denoted by [J: n = 0 (the empty clause is false in
every interpretation).

» Unit clause: n=1.

» Horn clause: a clause with at most one positive literal.



CNF

» A formula A is in conjunctive normal form, or simply CNF, if it is
either T, or L, or a conjunction of disjunctions of literals:

A:/\\/L,-J.
i

(In other words, A is a conjunction of clauses.)

» A formula B is called a conjunctive normal form of a formula A if
Bis equivalent to A and B is in conjunctive normal form.
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Satisfiability for Formulas in CNF and Sets of Clauses

» An interpretation / satisfies a formula in CNF

if and only if it satisfies the set of clauses

{Ci,....Cn}.

» An interpretation / satisfies a clause
LyVv...V Lk

if and only if it satisfies at least one literal L, in this clause.

An interpretation satisfies a set of clauses S if each clause Cin S
contains at least one literal true in this interpretation.



CNF Transformation

We will transform formulas to their CNFs using the following rewrite

rule system:
A<B = (RAvB)A(=BVA),
A—-B = -AvVB,
-(ANB) = -AV-B,
-(AvB) = -AA-B,
-—A = A7
(ATAN.. ANAR)VBiV...VvB, = (AivBiv...VvB;) A

(AmV Bi V...V By).
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CNF, Example

(=@ AN(pAg—=T1)=(p—T)) =
“=((p—=aA(prg—=1)V(P—=T)=
—((p=aA(PAG=T)A=(p—=T)=
=N PAg=T)A=(p—T)=

P=aAPAg—=Tr)A=(=pVT)=
(P=q@AN(PAG—=T)A=PATr=
P—=qAN(PAG—=T)ANPA-T=
(P= A=AV I)APA-T=
(P—= Q) A(=pV—=qVI)ApA-=T
(=pV @) A(=pV—=qVIr)ApA=r

A«~B = (-mAVB)A(-BVA),
A—-B = -AVB,
—|(A/\B) = -AV B,
-(AvB) = -AA-B,
——A = A,
(AAAN. .. ANAR)V B V...VB, =

(At Vv BiVv...VBp)

(AmV By V...V Bp).
The resulting formula is in CNF.
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A
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Why the CNF Transformation Algorithm is Correct

A<B = (-mAVB)A(-BVA),
A—-B = -AVB,
“(AAB) = -AV-B,
ﬁ(A\/B) = -AA-B,
-—A = A,
(A1A.../\Am)VB1\/...\/Bn = (A1\/B1\/...\/Bn) A

(Am\/B1\/...\/Bn).

A formula to which no rewrite rule is applicable

contains no <;

contains no —;

may only contain — applied to atoms;
cannot contain A in the scope of v;
(hence) is in CNF.

Termination is a separate issue ...

vV v.v v .Yy
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“((p—=ag)n(pAg—=r1)=(p—=T1))=
(=PVa)A (ﬂp.v”ﬂqv rYAPA=r
Therefore, the formula
“(e—=a)A(PAg—T1) = (P—1))
has the same models as the set consisting of four clauses

-pVq
-pV-qVr
p
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The CNF transformation reduces the satisfiability problem for
formulas to the satisfiability problem for sets of clauses.
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Problem

Compute the CNF of

p1 < (P2 <> (Ps <+ (Ps <> (Ps <> Ps))))-

p1 <> (P2 > (Ps <> (pa <+ (ps <> ps)))) =

(=p1 V(P2 <> (ps <> (Ps <> (ps <> Ps))))) A
(P1 V =(P2 > (s <+ (pa <> (ps <> ps))))) =

(=p1 V. (=2 V (ps > (Pa <+ (Ps < Ps))))
(P2 V =(ps < (pa <+ (s <> ps))))))
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A
A

If we continue, the formula will grow exponentially.
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There are formulas for which the shortest CNF has an exponential
size.

Is there any way to avoid exponential blowup?
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Idea

Using so-called naming or definition introduction.
» Take a non-trivial subformula A.

» Introduce a new name n for it. A name is a new propositional
variable.

» Add a formula stating that n is equivalent to A (definition for n).

p1 <> (P2 < (p3 <> (P4 <> (P5 < Ps))))
n < (ps < Pe)

» Replace the subformula by its name:

p1 < (P2 <> (p3 <> (s <> N)))
n < (ps <> Ps)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, ..., ps}-
But this set is not equivalent to the original formula.
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After Several Steps

p1 < (P2 <> (p3 <> (Pa <> (P5 <> Ps)))

< (P2 < M3);
n3 < (p3 <> Ng);
Ny ¢ (P );
Ns <> (Ps <> Pe)-

The conversion of the original formula to CNF introduces 32 copies of
Ps-

The conversion of the new set of formulas to CNF introduces 4 copies
of Pe-
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Clausal Form

» Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

» Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.



Definitional Clause Form Transformation

This algorithm converts a formula A into a set of clauses S such that
S is a clausal normal form of A.

If A has the form C; A... A C,, where n > 1 and each C; is a clause,
def

then S = {Cy,..., Cy}.
Otherwise, introduce a name for each subformula B of A such that B
is not a literal and use this name instead of the formula.



Example

subformula

definition

clauses

(=@ AN(pAg—T1)—=(p—T))

Converting a formula to clausal form.




Example

subformula

definition

clauses

(=@ AN(pAg—T1)—=(p—T))

P=aNPANg—T1)=(P—T)

(p—=a)A(pAg—T)

p—q

PAQ—T

pPAq

Take all subformulas that are not literals.




Example

subformula

definition

clauses

n | =((p—=aAn(prg—1)—(p—T))
no (p—=a)A(pAg—T1)—=(p—T)
n3 (p—=a)A(pAg—T)

ny p—q

Ns PAQ—T

ne PAq

ny p—r

Introduce names for these formulas.




Example

subformula

definition

clauses

n | =((p—=ag A

(pAg—=r)—=(p—T1))

ny < Mo

no (p—=a)n

(pANg—=1) = (P—1)

no <> (N3 — n7)

3 (p—q)A

(PAg—T)

ng < (N4 A nNs)

Na 0—q ng < (p—Qq)
ng PAQ—T ns <+ (ng — r)
ng pAQ ng <+ (PA Q)
™ por [ mo®@on

Introduce definitions.




Example

subformula

definition

clauses

m

nm | =(

(=) AN(PAG—T1)—(P—T))

ny < Mo

=N Voang
nyv n

n

P=aNPANg—T1)=(P—T)

no <> (N3 — n7)

—Nno V =Nz VvV ong
n3 Vv . np
-z V.o N

n3

(p—=a)A(pAg—T)

ng < (N4 A nNs)

—Nn3 V. N
—n3V nNs
—Ng V N5V N3

Ny

p—q

ng < (p—Qq)

gV -op Vag
p VvV
g vV M

ns

PAQ—T

ns <+ (ng — r)

—NsV —Ng VI
ne VvV ns
-r V. ns

Ne

pPAq

ng <+ (PA Q)

—Ng V. p
—neV q
—~p Vg Vng

ny

Convert the resulting formula to CNF using the standard algorithm.

p—r

ny < (p—r)

N —p VT
p Vv n
-r V.o ny
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If we introduce a name for a subformula and the occurence of the
subformula is positive or negative, then an implication is used instead
of equivalence.



Optimised Definitional Clause Form Transformation

If we introduce a name for a subformula and the occurence of the
subformula is positive or negative, then an implication is used instead
of equivalence.

See Chapter 5 for a precise description!



Example

subformula

definition

clauses

I

n | ~((p=>@PAPrg—=1)—(P—T))

n — —no

=NV oong
nyvVo np

n

(p—=a)A(prg—r1)—(p—T)

(n3 — n7) — o

—Nno VN3 Vong
n3Vv. . np
—mNV

n3

(p—=a)AN(pAg—T)

ng — (N4 A ns)

N3V N
—n3V nNs
=Ny V —Ns V N3

Ny

p—q

[ o)

gV -p VQq
p VvV N4
-q VvV N4

ns

PDAQ—T

ns — (ng —r)

—ns \ —ng V' r
ng V. ns
=r V. ns

Ne

pPAq

M6 — (0~ q)

-ngV P
-ngV Qq
-p Vg Vs

(p—r)—m

-z -=p Vr
pv m
-r Vv on



Example

subformula

definition

clauses

m

n | ~((p=>@PAPrg—=1)—(P—T))

n — —no

=NV oong
myv n

o

(p—=a)A(prg—r1)—(p—T)

(ng — n7) — e

=Ny v —n3 vV ny
ngvVv . ne
UML)

n3

(p—=a)AN(pAg—T)

n3 — (N4 A ns)

N3V N
=Nz VvV nNs
—Ng V —Ns V N3

Ny

p—q

ng — (p—q)

gV —-p Vqg
p VvV N4
g vV Ny

Ns

PDAQ—T

ns — (ng —r)

—ns V —ng V r
ng VvV ns
=r V ns

Ne

pPAq

ng — (P AQ)

-ng V. p
-ngV Qq
P Vg Ve

nz

p—r

(p—r1)—n

=7V -p Vr

p Vv nz
=r V. ny

All clauses shown in the red color are not generated by the optimised transformation.



Example

subformula definition clauses
I
no| ~((e=>gnprg—=r)—=(pP—1) | n—-n —ny Vg
no P—=gA(PAg—=T1)—=(P—T) (3 — n7) — Mo
ngvVv . ne
UML)
N3 (P—=g)A(pAg—T) ng — (N4 A ns) —mV N4
=Nz VvV nNs
Ny p—q ng — (p—Qq) -V -p Vq
ns PAQ—T ns — (ng —r) —ns V —ng V r
ng pPAQ ng — (P AQ)
—~p V—q Vng
ny p—r (p—r)—n7
p Vv m
-r Vv on

The optimised transformation gives fewer clauses.
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Satisfiability-Checking for Sets of Clauses

The CNF transformation of

“(e—=a)A(pAGg—=T1)—(P—1))
gives the set of four clauses:

PV g
—-pV-qVr
P

-r

Every interpretation that satisfies this set of clauses must assign 1 to
p and 0 to r, so we do not have to guess values of these variables.

In fact, we can do even better and establish unsatisfiability without
any guessing.
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Searching for Satisfiability

-pVq
—pV-qVr

-r



Searching for Satisfiability

{p—1

-pVq
—pV-qVr

-r



Searching for Satisfiability

{p—1

-pVvVq
—pV-qVr

-r
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Searching for Satisfiability

{p—1

~qVr

-r
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Searching for Satisfiability

{p—=1,r—0

~qVr

-r
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Searching for Satisfiability
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Searching for Satisfiability

{p—=1,r—0,qg—1}



Searching for Satisfiability

{p—1,r—0,9g— 1}

This set of clauses is unsatisfiable.



Unit Propagation

Let S be a set of clauses. Unit propagation: repeatedly performing
the following transformation: if S contains a unit clause, i.e. a clause
consisting of one literal L, then

1. remove from S every clause of the form LV C’;

2. replace in S every clause of the form L\ C’ by the clause C'.



Unit Propagation, Example

m

=Ny Vs

ny vV ne
—MnoV-ngVng
nz Vv ns

=Nz vV no
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ﬁn2

—MnoV-ngVng
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=Nz vV no

=Nz V Ny
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pVns
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Unit Propagation, Example

—=np \/ —N3 V ny
nz Vv ns

=Nz vV no

=Nz V Ny

—N3 V Ns

=N4 V —Ns V N3
—Ng vV -pVvqg
pVns

~qV
—NsV —NgVr
Ne V Ns
=rV ns
—Neg VP
—NegV q
“pPV-qVne
Nz N -pvVr
pVny
=rvVong



Unit Propagation, Example

N3

=y

=Nz V Ny

—N3 V Ns

=N4 V —Ns V N3
—Ng vV -pVvqg
pVns

~qV
—NsV —NgVr
Ne V Ns
=rV ns
—Neg VP
—NegV q
“pPV-qVne
Nz N -pvVr
pVny
=rvVong



Unit Propagation, Example

N3

=y

=Nz V Ny

—N3 V Ns

=N4 \V —Ns V N3
—Ng vV -pVvqg
pVns

~qV
—NsV —NgVr
Ne V Ns
=rV ns
—Neg VP
—NegV q
“pPV-qVne
Ny N —-p\vVr
pVny
=rvVong



Unit Propagation, Example

~qV
—NsV —NgVr
Ne V Ns
=rV ns
—Neg VP
—NegV q
Ny —pV=qVne
Ns
p
—Ng vV -pVvqg -r
pVns



Unit Propagation, Example

~qV
—NsV —NgVr
Ne \V Ns
=rV ns
—Neg V P
—NegV q
Ny —pV=qVne
Ns
p
—Ng vV -pVvqg -r
pVns
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—Ng

—NegV q
—qVne



Unit Propagation, Example

‘\ne

—Neg V q
—qVne



Unit Propagation, Example

We established unsatisfiability of this set of clauses in a completely
deterministic way, by unit propagation.



DPLL = Splitting + Unit Propagation

procedure DPLL(S)
input: set of clauses S
output: satisfiable or unsatisfiable
parameters: function select_literal
begin
S := propagate(S)
if S is empty then return satisfiable
if S contains [J then return unsatisfiable
L := select_literal(S)
if DPLL(S U {L}) = satisfiable
then return satisfiable
else return DPLL(SU {L})
end




DPLL. Example 1

Can be illustrated using DPLL trees (similar to splitting trees).

—pV-q
-pVq
pVv-q

pVvQq
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Can be illustrated using DPLL trees (similar to splitting trees).
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Can be illustrated using DPLL trees (similar to splitting trees).

—pV—-q

—pVvVq

pV-q

-0 /P pvq
—pV—q
—pVq
pVv-q
pvVq

—-q



DPLL. Example 1

—pV-q
-pVq
pV-q

pVvQq

—pV-q
-pVq
pVv-q

pVvQq

Can be illustrated using DPLL trees (similar to splitting trees).

B

—-q

AN

—pV-q
-pVq
pVv-q

pVvq




DPLL. Example 1

—pV-q
-pVq
pV-q

pVvQq

—pV-q
-pVq
pVv-q

pVvQq

Can be illustrated using DPLL trees (similar to splitting trees).

B

—-q

O]

AN

—pV-q
-pVq
pVv-q

pVvq

-q

O]

Since all branches end up in a set contaning the empty clause, the
initial set of clauses is unsatisfiable.




DPLL. Example 2

—pV-q
—pVq
pv-q

—pV-q
—pVq
pVv-q

—-q

O]

The set of clauses is satisfiable.

N3

-p
—pV-q
—pVq
pVv-q

-q

(empty set)




DPLL. Example 2

-pvgq
P p\/_\q P
p -p
-pVqg A%
pV-q pV-q
-q —-q

@ (empty set)

The set of clauses is satisfiable.

The model can be obtained by collecting all selected literals and
literals used in unit propagation on the branch resulting in the empty
set.

This DPLL tree gives us the model {p — 0, q — 0}.



Two Optimisations

Any clause clause p v —p Vv C is a tautology. Tautologies can be
removed.
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Two Optimisations

Any clause clause p v —p Vv C is a tautology. Tautologies can be
removed. _
Aliteral Lin Sis called pure if S contains no clauses of the form Lv C

All clauses containing a pure literal can be satisfied by assigning a
suitable truth value to the variable of this literal.

Hence, clauses containing pure literals can be removed, too.



Pure Literals: Example

—p2 V =p3
P1V P2
—p1 VP2V 3
—P1V 3
p1V p2
=Py V P2V 2P3



Pure Literals: Example

—p2V =3
p1V —p2
—P1V P2V p3
—P1V 3
p1Vpe2
=Py V P2V 2P3

The literal —ps is pure in this set. We can remove all clauses
containing this literal.



Pure Literals: Example

p1V —p2

p1Vp2



Pure Literals: Example
p1V —p2

p1Vpe2

Now the literal p; is pure in this set. We can remove all clauses
containing this literal.



Pure Literals: Example

We obtain the empty set of clauses.



Pure Literals: Example

—p2V P3
P1V P2
—P1V P2V p3
—P1V 3
p1V p2
=Py V P2V 2P3

We obtain the empty set of clauses.

This gives us two models:

{p1 = 1,p2+— 0,p3 — 0}
{p1 = 1,p2—1,p3+— 0}
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A clause is called Horn if it contains at most one positive literal.
Examples:

P4
—p1 V p2
—p1V P2V p3
—P3 V P4



Horn Clauses

A clause is called Horn if it contains at most one positive literal.
Examples:

P4
—p1 V p2
—p1V P2V p3
—P3 V P4

The following clauses are non-Horn:

p1Vpe2
p1V P2V p3
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Propagation
Example:
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—P3V —pa
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Satisfiability of Horn Clauses Can be Decided by Unit

Propagation
Example:
P1
P11V P2
—p1V P2V P3
—\pa \V —\p4

Model: {p1 — 1,p2+— 1,p3 — 1,ps — 0}

Note that deleting a literal from a Horn clause gives a Horn clause.
Therefore, unit propagation applied to a set C of Horn clauses gives a
set C’ of Horn clauses.

Two cases:

1. C’ contains [J. Then, C’ (and hence C) is unsatisfiable.

2. C’ does not contain [J. Then:

» Each clause in C’ has at least two literals.
» Hence each clause in C’ contains at least one negative literal;



Satisfiability of Horn Clauses Can be Decided by Unit

Propagation
Example:
P1
—p1V P2
—p1 VP2V p3
—P3V —pa

Model: {p1 — 1,p2+— 1,p3 — 1,ps — 0}

Note that deleting a literal from a Horn clause gives a Horn clause.
Therefore, unit propagation applied to a set C of Horn clauses gives a
set C’ of Horn clauses.

Two cases:

1. C’ contains [J. Then, C’ (and hence C) is unsatisfiable.

2. C’ does not contain [J. Then:
» Each clause in C’ has at least two literals.
» Hence each clause in C’ contains at least one negative literal;
» Hence setting all variables in C’ to 0 satisfies C'.
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Suppose we have variables v1, ..., v, and want to express that
exactly k of them are true. These formulas are very useful for
encoding various problems in SAT.

We will write this property as a formula T (v1, ..., vy).
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Expressing Properties “k out of n variables are true”

Suppose we have variables v1, ..., v, and want to express that
exactly k of them are true. These formulas are very useful for
encoding various problems in SAT.

We will write this property as a formula T (v1, ..., vy).

First, let us express some simple special cases:

def

T()(V1,...7Vn) = Vi A...N\NV,
def

Ti(vi,. V) = (U V. V) AN (- VoY)
def

Tooa(vi,ovn) = (e Ve V) AN (ViV Y)

def
To(Vi,.... V) S WA...AV,



Expressing Properties “k out of n variables are true”
To define Ty for 0 < k < n, introduce two formulas:

> T<k(vy,...,Vs): at most k variables among vi., ..., v, are true,
where Kk =0...n—1;
> To(vy,...,Vv,): at least k variables among v4, ..., v, are true,

where Kk =1...n;
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> T<k(vy,...,Vv,): at most k variables among vi, ..
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Expressing Properties “k out of n variables are true
To define Ty for 0 < k < n, introduce two formulas:

> T<k(vy,...,Vv,): at most k variables among vi, ..

where k =0...n—1;
> To(vy,...,Vv,): at least k variables among v4, ..., v, are true,

where k =1...n;

., vy are true,

def
Tgk(V1,...,Vn): /\ =X1 V...V o Xkyq.
X1,y Xkt €{Vi, .., Vi)
X1, ..., Xky1 are distinct
“At most k variables among v, ..., v, are true” is equivalent to “At
most n — k variables among vy, ..., v, are false”.
def
TZk(Vh...,Vn): /\ X1 V..oV Xp_k41-
X17-~-7Xn—k+1 S {V17~-~:Vn}

X1,...,Xn_ks1 are distinct
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Enter digits from 1 to 9 into
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Enter digits from 1 to 9 into
the blank spaces.

Every row must contain one
of each digit.

So must every column,
as must every 3x3 square.

This instance has exactly
one solution.



Sudoku

411187 ]9|5|6]3)2
6139|8215 ]7]|4
5127364111189
9|/5|214]3|6|8]1]7
114,658 |7[9]|2) 83
718 |312]1]9|4]5]|6
216111953748
317151614 ]8|2]9]1
81914111 7]2|3]6]|5

Enter digits from 1 to 9 into
the blank spaces.

Every row must contain one
of each digit.

So must every column,
as must every 3x3 square.

This instance has exactly
one solution.



Sudoku

4111879 |5|6]3)2
6139|182 |1 |5]7]4
512718164189
9|5 |24 (3|6|8]1]|7
114,658 |7[9]2) 83
718|312 1]9|4]5]|6
216|195 |3|7]4)38
3171851614 ,8(|2]9)1
819|411 ]17]2|3]6]|5

Enter digits from 1 to 9 into
the blank spaces.

Every row must contain one
of each digit.

So must every column,
as must every 3x3 square.

This instance has exactly
one solution.



Sudoku

411187 ]9|5|6]3)2
6139|821 |5]7]|4
5127364111189
9|/5|2(4 3|68 1|7
114,658 |7[9]2) 3
718|312 ]1]9|4]5]|6
216111953748
317,564 ,8[2]91
81914111 7]2|3]6]|5

Enter digits from 1 to 9 into
the blank spaces.

Every row must contain one
of each digit.

So must every column,
as must every 3x3 square.

This instance has exactly
one solution.
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Introduce 729 propositional
variables v,.4, Where
r,e,de{1,...,d}.

The variable v,,y denotes that the
cell in the row number r and
column number ¢ contains the
digit d.
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Introduce 729 propositional
variables v,.4, Where
r,e,de{1,...,d}.
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cell in the row number r and
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digit d.
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satisfies the formula
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Sudoku as an instance of SAT

N W M O N 00 ©

—_

Introduce 729 propositional
variables v,.y4, where
r,e,de{1,...,d}.

The variable v,,y denotes that the
cell in the row number r and
column number ¢ contains the
digit d.

For example, this configuration
satisfies the formula

V129 N Vogg A —1Vgo1.-

We should express all rules of
sudoku using the variables v,y.



Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit.
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Encoding Sudoku in SAT
We have to write down that each cell contains exactly one digit.
Viet V Vg2 V...V Vieg V Vieg
“Wret V Wiz

Vet V Vi3 2,997 clauses,

6,561 literals
“Wreg V Ve
Every row must contain one of each digit:

{(~VieadVViealrcc,de{l,.,9,c<c}) 2,916 clauses,

’ ' 5,832 literals
Every column must contain one of each digit: 2,916 clauses,

similar. 5,832 literals
Every 3x3 square must contain one of each digit: 2,916 clauses,

similar. 5,832 literals

729 variables, 11,745 clauses, 24,057 literals, nearly all clauses are
binary.



Encoding Sudoku in SAT
We have to write down that each cell contains exactly one digit.
Viet V Vg2 V...V Vieg V Vieg
Wit V WVie2
“WViet V Vi3

“Wreg V Vi
Every row must contain one of each digit:

{_‘VI',C,d \/ _‘VLC/,d | r7 C? Clvd S {17"'79}70 < C/}'

Every column must contain one of each digit:
similar.
Every 3x3 square must contain one of each digit:
similar.
729 variables, 11,745 clauses, 24,057 literals, nearly all clauses are

binary.
Finally, we add unit clauses corresponding to the initial configuration,
for example viag.






Loop the Loop

You have to draw lines between the dots
to form a single loop without crossings or

3 1 2 2 branches. The numbers indicate how
e o o o o o many lines surround it.
3
2 2
0o 2 1 2
3



Loop the Loop

You have to draw lines between the dots

. to form a single loop without crossings or
3 1 2| 2 branches. The numbers indicate how
many lines surround it.
3
2|2
0 2 1 2
3




Loop the Loop

You have to draw lines between the dots
to form a single loop without crossings or
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A crossing is a node with four arcs
attached to it.
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Loop the Loop

3 1 2
3
.22

0 2 1
313

You have to draw lines between the dots
to form a single loop without crossings or
branches. The numbers indicate how
many lines surround it.

If a cell contains a number m, then there
should be m arcs around this number.



Loop the Loop

W INdD|IND W

You have to draw lines between the dots
to form a single loop without crossings or
branches. The numbers indicate how
many lines surround it.

A crossing is a node with four arcs
attached to it.

A branch is a node with three arcs
attached to it.

If a cell contains a number m, then there
should be m arcs around this number.
All these properties are formulated in
terms of (a number of) arcs.



Formalisation

Introduce variables denoting arcs:

» vj: there is a vertical arc between the
nodes (i,j) and (i,j + 1);

6 . » hj: there is a horizontal arc between
; 3 1 2|2 the nodes (/,) and (i + 1, ).
3
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Formalisation

6
3 1
5
3
4 e
2|2
3
0 2
2
313
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Introduce variables denoting arcs:
» vj: there is a vertical arc between the
nodes (i,j) and (i,j + 1);
» hj: there is a horizontal arc between
the nodes (/,j) and (i + 1,j).

For example, for this position we have
Vaz A Vag A hys.
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Introduce variables denoting arcs:

» vj: there is a vertical arc between the
nodes (i,j) and (i,j + 1);

» hj: there is a horizontal arc between
the nodes (/,j) and (i + 1,j).

Then almost all properties are formulated
using the formulas Tx and these
variables.
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Introduce variables denoting arcs:
» vj: there is a vertical arc between the
nodes (i,j) and (i,j + 1);
» hj: there is a horizontal arc between
the nodes (/,j) and (i + 1,j).

Then almost all properties are formulated
using the formulas T and these
variables. For example,

Ts(vis, Vas, his, hye)
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Introduce variables denoting arcs:

» vj: there is a vertical arc between the
nodes (i,j) and (i,j + 1);

» hj: there is a horizontal arc between
the nodes (/,j) and (i + 1,j).

Then almost all properties are formulated
using the formulas T and these
variables. For example,

T3(vis, Vos, his, hie)
To(Vs3, Vea, haa, hus) v To(Vs3, Vsa, haa, has)



Formalisation

6
3 1
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Introduce variables denoting arcs:

» vj: there is a vertical arc between the
nodes (i,j) and (i,j + 1);

» hj: there is a horizontal arc between
the nodes (/,j) and (i + 1,j).

Then almost all properties are formulated
using the formulas T and these
variables. For example,

T3(vis, Vos, his, hie)
To(Vs3, Vea, haa, hus) v To(Vs3, Vsa, haa, has)

What we cannot express is the property to
have a single loop. In fact, there is no simple
way of expressing it in propositional logic.



Running a SAT Solver

Very simple but efficient SAT solver: MiniSat,
http://minisat.se/.
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Running a SAT Solver

Very simple but efficient SAT solver: MiniSat,
http://minisat.se/.

P1
PV P2
—p1V P2V P3
—P2 V =3

DIMACS input format:

p cnf 3 4
10

-1 20
-1 -2 30
-2 -3 0

3 variables, 4 clauses.

—p1V P2V P3


http://minisat.se/

Solving Sudoku with minisat

How to run:

minisat sudoku.sat sudoku.out




End of Lecture 7

Slides for lecture 7 end here . ..
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