Outline

LTL: Linear Temporal Logic
Computation Tree
Linear Temporal Logic
Using Temporal Formulas
Equivalences of Temporal Formulas Expressing Transitions

Computation Tree

Let $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, d o m, L)$ be a transition system and $s \in S$ be a state. The computation tree for \mathbb{S} starting at s is the following (possibly infinite) tree.

1. The nodes of the tree are labeled by states in S.
2. The root of the tree is labeled by s.
3. For every node s^{\prime} in the tree, its children are exactly such nodes $s^{\prime \prime} \in S$ that $\left(s^{\prime}, s^{\prime \prime}\right) \in T$.

Computation Trees and Paths

Computation Trees and Paths

Computation Trees and Paths

A computation path for \mathbb{S} : any branch s_{0}, s_{1}, \ldots in the tree.

Computation Trees and Paths

A computation path for \mathbb{S} : any branch s_{0}, s_{1}, \ldots in the tree.

Computation Trees and Paths

A computation path for \mathbb{S} : any branch s_{0}, s_{1}, \ldots in the tree.

Computation

Every path in the computation tree corresponds to a computation:

Computation

Every path in the computation tree corresponds to a computation:

Computation

Every path in the computation tree corresponds to a computation:

Computation

Every path in the computation tree corresponds to a computation:

Computation

Every path in the computation tree corresponds to a computation:

Properties

- Computation paths for a transition system are exactly all branches in the computation trees for this transition system.

Properties

- Computation paths for a transition system are exactly all branches in the computation trees for this transition system.
- Let n be a node in a computation tree C for \mathbb{S} labeled by s^{\prime}. Then the subtree of C rooted at s^{\prime} is the computation tree for \mathbb{S} starting at s^{\prime}. In other words, every subtree of a computation tree rooted at some node is itself a computation tree.

Properties

- Computation paths for a transition system are exactly all branches in the computation trees for this transition system.
- Let n be a node in a computation tree C for \mathbb{S} labeled by s^{\prime}. Then the subtree of C rooted at s^{\prime} is the computation tree for \mathbb{S} starting at s^{\prime}. In other words, every subtree of a computation tree rooted at some node is itself a computation tree.
- For every transition system \mathbb{S} and state s there exists a unique computation tree for \mathbb{S} starting at s, up to the order of children.

LTL

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

LTL

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

Formulas are built in the same way as in propositional logic, with the following additions:

1. If F is a formula, then $\bigcirc F, \square F$, and $\diamond F$ are formulas;
2. If F and G are formulas, then $F U G$ and $F R G$ are formulas.

LTL

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

Formulas are built in the same way as in propositional logic, with the following additions:

1. If F is a formula, then $\bigcirc F, \square F$, and $\diamond F$ are formulas;
2. If F and G are formulas, then $F U G$ and $F R G$ are formulas.next
always (in future)
sometimes (in future)
until
release

Semantics (intuitive)

$$
\begin{aligned}
& \text { OF } \\
& \bigcirc-(F) \\
& \Delta F \\
& \square F \\
& \text { FUG } \\
& \text { FiG }
\end{aligned}
$$

Semantics

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.

Semantics

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.
Let $\pi=s_{0}, s_{1}, s_{2} \ldots$ be a sequence of states and F be an LTL formula.

Semantics

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths. Let $\pi=s_{0}, s_{1}, s_{2} \ldots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \mid=F$, by induction on F as follows.

Semantics

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths. Let $\pi=s_{0}, s_{1}, s_{2} \ldots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \| F$, by induction on F as follows.
For all $i=0,1, \ldots$ denote by π_{i} the sequence of states $s_{i}, s_{i+1}, s_{i+2} \ldots$ (note that $\pi_{0}=\pi$).

Semantics

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths. Let $\pi=s_{0}, s_{1}, s_{2} \ldots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \mid=F$, by induction on F as follows.
For all $i=0,1, \ldots$ denote by π_{i} the sequence of states $s_{i}, s_{i+1}, s_{i+2} \ldots$ (note that $\pi_{0}=\pi$).

Semantics

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths. Let $\pi=s_{0}, s_{1}, s_{2} \ldots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \mid=F$, by induction on F as follows.
For all $i=0,1, \ldots$ denote by π_{i} the sequence of states $s_{i}, s_{i+1}, s_{i+2} \ldots$ (note that $\pi_{0}=\pi$).

Semantics

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths. Let $\pi=s_{0}, s_{1}, s_{2} \ldots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \mid=F$, by induction on F as follows.
For all $i=0,1, \ldots$ denote by π_{i} the sequence of states $s_{i}, s_{i+1}, s_{i+2} \ldots$ (note that $\pi_{0}=\pi$).

Semantics

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths. Let $\pi=s_{0}, s_{1}, s_{2} \ldots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \mid=F$, by induction on F as follows.
For all $i=0,1, \ldots$ denote by π_{i} the sequence of states $s_{i}, s_{i+1}, s_{i+2} \ldots$ (note that $\pi_{0}=\pi$).
To define $\pi \models F$ we will use $\pi_{i} \models G$ for some i and G. We will sometimes (slightly informally) say that G is true in s_{i} or G holds in s_{i} to mean that G is true on π_{i}.

Semantics, formally

The semantics of propositional connectives is standard.

Semantics, formally

The semantics of propositional connectives is standard.
Atomic formulas are true iff they are true in s_{0}.

Semantics, formally

The semantics of propositional connectives is standard.
Atomic formulas are true iff they are true in s_{0}.
The semantics of formulas built using propositional connectives on π is the same as in propositional logic where all subformulas are also evaluated on π.

Semantics, formally

The semantics of propositional connectives is standard.
Atomic formulas are true iff they are true in s_{0}.
The semantics of formulas built using propositional connectives on π is the same as in propositional logic where all subformulas are also evaluated on π.

$$
\text { 1. } \pi \models \top \text { and } \pi \mid \vDash \perp \text {. }
$$

Semantics, formally

The semantics of propositional connectives is standard.
Atomic formulas are true iff they are true in s_{0}.
The semantics of formulas built using propositional connectives on π is the same as in propositional logic where all subformulas are also evaluated on π.

1. $\pi \models \top$ and $\pi \not \vDash \perp$.
2. $\pi \models x=v$ if $s_{0} \models x=v$.

Semantics, formally

The semantics of propositional connectives is standard.
Atomic formulas are true iff they are true in s_{0}.
The semantics of formulas built using propositional connectives on π is the same as in propositional logic where all subformulas are also evaluated on π.

```
1. \(\pi \models\) 丁 and \(\pi \mid \vDash \perp\).
2. \(\pi \models x=v\) if \(s_{0} \models x=v\).
3. \(\pi \models F_{1} \wedge \ldots \wedge F_{n}\) if for all \(j=1, \ldots, n\) we have \(\pi \models F_{j}\);
    \(\pi \models F_{1} \vee \ldots \vee F_{n}\) if for some \(j=1, \ldots, n\) we have \(\pi \models F_{j}\).
4. \(\pi \models \neg F\) if \(\pi \not \models F\).
5. \(\pi \models F \rightarrow G\) if either \(\pi \mid \vDash F\) or \(\pi \models G\);
    \(\pi \models F \leftrightarrow G\) if either both \(\pi \not \vDash F\) and \(\pi \not \vDash G\) or both \(\pi \models F\) and
    \(\pi \models G\).
```


Semantics of temporal operators

$$
\text { 6. } \pi \models \bigcirc F \text { if } \pi_{1} \models F \text {; }
$$

Semantics of temporal operators

6. $\pi \models \bigcirc F$ if $\pi_{1} \models F$;
$\pi \models \diamond F$ if for some $k \geq 0$ we have $\pi_{k} \models F ;$

Semantics of temporal operators

6. $\pi \models \bigcirc F$ if $\pi_{1} \models F$;
$\pi \models \diamond F$ if for some $k \geq 0$ we have $\pi_{k} \models F$;
$\pi \models \square F$ if for all $i \geq 0$ we have $\pi_{i} \models F$.

$$
s_{0} \quad s_{1} \quad s_{2} \quad s_{k-1} \quad s_{k} \quad s_{k+1}
$$

$$
\square F
$$

Semantics of temporal operators

6. $\pi \models \bigcirc F$ if $\pi_{1} \models F$;
$\pi \models \diamond F$ if for some $k \geq 0$ we have $\pi_{k} \models F$;
$\pi \models \square F$ if for all $i \geq 0$ we have $\pi_{i} \models F$.
7. $\pi \models F$ U G if for some $k \geq 0$ we have $\pi_{k} \models G$ and $\pi_{0} \models F, \ldots, \pi_{k-1} \models F$;

$$
\begin{array}{llllll}
s_{0} & s_{1} & s_{2} & s_{k-1} & s_{k} & s_{k+1}
\end{array}
$$

$F U G$

Semantics of temporal operators

6. $\pi \models \bigcirc F$ if $\pi_{1} \models F$;
$\pi \models \diamond F$ if for some $k \geq 0$ we have $\pi_{k} \models F$;
$\pi \models \square F$ if for all $i \geq 0$ we have $\pi_{i} \models F$.
7. $\pi \models F \mathrm{U} G$ if for some $k \geq 0$ we have $\pi_{k} \models G$ and
$\pi_{0} \models F, \ldots, \pi_{k-1} \models F$;
$\pi \models F \mathrm{R}$ G if for all $k \geq 0$, either $\pi_{k} \models G$ or there exists $j<k$ such that $\pi_{j} \models F$.

$$
\begin{array}{llllll}
s_{0} & s_{1} & s_{2} & s_{k-1} & s_{k} & s_{k+1}
\end{array}
$$

FRG

Semantics of temporal operators

6. $\pi \models \bigcirc F$ if $\pi_{1} \models F$;
$\pi \models \diamond F$ if for some $k \geq 0$ we have $\pi_{k} \models F$;
$\pi \models \square F$ if for all $i \geq 0$ we have $\pi_{i} \models F$.
7. $\pi \models F \mathrm{Ul} G$ if for some $k \geq 0$ we have $\pi_{k} \models G$ and $\pi_{0} \models F, \ldots, \pi_{k-1} \models F$;
$\pi \models F \mathrm{R}$ G if for all $k \geq 0$, either $\pi_{k} \models G$ or there exists $j<k$ such that $\pi_{j} \models F$.

Standard properties???

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

Standard properties???

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

We are not interested in satisfiability, validity etc. for temporal formulas.

Standard properties???

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

We are not interested in satisfiability, validity etc. for temporal formulas.

For an LTL formula F we can consider two kinds of properties of \mathbb{S} :

1. does F hold on some computation path for \mathbb{S} from an initial state?
2. does F hold on all computation paths for \mathbb{S} from an initial state?

Precedences of Connectives and Temporal Operators

Connective	Precedence
$\neg, \bigcirc, \diamond, \square$	5
U, R	4
\wedge, \vee	3
\rightarrow	2
\leftrightarrow	1

Expressing Some Properties

1. F never holds in two consecutive states.

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state.

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
4. F holds in at least two states.

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
4. F holds in at least two states. $\diamond(F \wedge \bigcirc \diamond F)$

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
4. F holds in at least two states. $\diamond(F \wedge \bigcirc \diamond F)$
5. Unless s_{i} is the first state of the path, if F holds in state s_{i}, then G must hold in at least one of the two states just before s_{i}, that is s_{i-1} and s_{i-2}.

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
4. F holds in at least two states. $\diamond(F \wedge \bigcirc \diamond F)$
5. Unless s_{i} is the first state of the path, if F holds in state s_{i}, then G must hold in at least one of the two states just before s_{i}, that is s_{i-1} and $s_{i-2} .(\bigcirc F \rightarrow G) \wedge \square(\bigcirc \bigcirc F \rightarrow G \vee \bigcirc G)$

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
4. F holds in at least two states. $\diamond(F \wedge \bigcirc \diamond F)$
5. Unless s_{i} is the first state of the path, if F holds in state s_{i}, then G must hold in at least one of the two states just before s_{i}, that is s_{i-1} and $s_{i-2} .(\bigcirc F \rightarrow G) \wedge \square(\bigcirc \bigcirc F \rightarrow G \vee \bigcirc G)$
6. F happens infinitely often.

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
4. F holds in at least two states. $\diamond(F \wedge \bigcirc \diamond F)$
5. Unless s_{i} is the first state of the path, if F holds in state s_{i}, then G must hold in at least one of the two states just before s_{i}, that is s_{i-1} and $s_{i-2} .(\bigcirc F \rightarrow G) \wedge \square(\bigcirc \bigcirc F \rightarrow G \vee \bigcirc G)$
6. F happens infinitely often. $\square \diamond F$

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
4. F holds in at least two states. $\diamond(F \wedge \bigcirc \diamond F)$
5. Unless s_{i} is the first state of the path, if F holds in state s_{i}, then G must hold in at least one of the two states just before s_{i}, that is s_{i-1} and $s_{i-2} .(\bigcirc F \rightarrow G) \wedge \square(\bigcirc \bigcirc F \rightarrow G \vee \bigcirc G)$
6. F happens infinitely often. $\square \diamond F$
7. F holds in each even state and does not hold in each odd state (states are counted from 0).

Expressing Some Properties

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$
2. If F holds in a state s, it also holds in all states after s.
$\square(F \rightarrow \square F)$
3. F holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
4. F holds in at least two states. $\diamond(F \wedge \bigcirc \diamond F)$
5. Unless s_{i} is the first state of the path, if F holds in state s_{i}, then G must hold in at least one of the two states just before s_{i}, that is s_{i-1} and $s_{i-2} .(\bigcirc F \rightarrow G) \wedge \square(\bigcirc \bigcirc F \rightarrow G \vee \bigcirc G)$
6. F happens infinitely often. $\square \diamond F$
7. F holds in each even state and does not hold in each odd state (states are counted from 0). $F \wedge \square(F \leftrightarrow \bigcirc \neg F)$.

Not all "reasonable" properties are expressible in LTL
p holds in all even states.

End of Lecture 19

Slides for lecture 19 end here ...

Meaning of Some Formulas

- $\Delta \square F ;$

Meaning of Some Formulas

- $\Delta \square F$;
- $\square(F \rightarrow \bigcirc F)$;

Meaning of Some Formulas

- $\Delta \square F ;$
- $\square(F \rightarrow O F)$;
- $\neg F U \square F$;

Meaning of Some Formulas

- $\Delta \square F$;
- $\square(F \rightarrow \bigcirc F)$;
- $\neg F U \square F$;
- $F U \neg F$;

Meaning of Some Formulas

- $\Delta \square F$;
- $\square(F \rightarrow \bigcirc F)$;
- $\neg F U \square F$;
- $F U \neg F$;
- $\diamond F \wedge \square(F \rightarrow O F)$;

Meaning of Some Formulas

- $\Delta \square F$;
- $\square(F \rightarrow \bigcirc F)$;
- $\neg F U \square F$;
- $F U \neg F$;
- $\diamond F \wedge \square(F \rightarrow O F)$;
- $\square \diamond F$;

Meaning of Some Formulas

- $\Delta \square F$;
- $\square(F \rightarrow \bigcirc F)$;
- $\neg F U \square F$;
- $F U \neg F$;
- $\diamond F \wedge \square(F \rightarrow O F)$;
- $\square \diamond F$;
- $F \wedge \square(F \leftrightarrow \neg \bigcirc F)$;

Equivalences: Unwinding Properties

$$
\begin{aligned}
\diamond F & \equiv F \vee \bigcirc \diamond F \\
\square F & \equiv F \wedge \bigcirc \square F \\
F \cup G & \equiv G \vee(F \wedge \bigcirc(F \cup G)) \\
F R G & \equiv G \wedge(F \vee \bigcirc(F \mathrm{R} G))
\end{aligned}
$$

Equivalences: Negation of Temporal Operators

$$
\begin{aligned}
\neg \bigcirc F & \equiv \bigcirc \neg F \\
\neg \diamond F & \equiv \square \neg F \\
\neg \square F & \equiv \diamond \neg F \\
\neg(F \cup G) & \equiv \neg F \mathrm{R} \neg G \\
\neg(F \mathrm{RG}) & \equiv \neg F \mathrm{U} \neg G
\end{aligned}
$$

Expressing Temporal Operators Using U

$$
\begin{aligned}
\forall F & \equiv \top \mathbf{U} F \\
\square F & \equiv \neg(\top \mathbf{U} \neg F) \\
F \mathrm{RG} & \equiv \neg(\neg F \mathbf{U} \neg G) .
\end{aligned}
$$

Therefore, all operators can be expressed using \bigcirc and U .

Other Equivalences

$$
\begin{aligned}
\diamond(F \vee G) & \equiv \diamond F \vee \diamond G \\
\square(F \wedge G) & \equiv \square F \wedge \square G
\end{aligned}
$$

But

$$
\begin{array}{ll}
\square(F \vee G) & \not \equiv \\
\diamond(F \wedge G) & \not \equiv \\
\diamond F \vee G \\
\diamond \diamond \wedge G
\end{array}
$$

How to Show that Two Formulas are not Equivalent?

Find a path that satisfies one of the formulas but not the other. For example for $\square(F \vee G)$ and $\square F \vee \square G$.

Formalization: Variables and Domains

variable	domain	explanation
St_coffee	$\{0,1\}$	drink storage contains coffee
st_beer	$\{0,1\}$	drink storage contains beer
disp	$\{$ none, beer, coffee $\}$	content of drink dispenser
coins	$\{0,1,2,3\}$	number of coins in the slot
customer	$\{$ none, student, prof $\}$	customer

Transitions

1. Recharge which results in the drink storage having both beer and coffee.
2. Customer_arrives, after which a customer appears at the machine.
3. Customer_leaves, after which the customer leaves.
4. Coin_insert, when the customer inserts a coin in the machine.
5. Dispense_beer, when the customer presses the button to get a can of beer.
6. Dispense_coffee, when the customer presses the button to get a cup of coffee.
7. Take_drink, when the customer removes a drink from the dispenser.

Reasoning About Transitions

Consider the following properties:

1. "one cannot have two beers in a row without inserting a coin".
2. "If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival".
Note that they are about transitions, not about states.

Reasoning About Transitions

Consider the following properties:

1. "one cannot have two beers in a row without inserting a coin".
2. "If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival".
Note that they are about transitions, not about states.
How can one represent these properties?

Reasoning About Transitions

Consider the following properties:

1. "one cannot have two beers in a row without inserting a coin".
2. "If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival".

Note that they are about transitions, not about states.
How can one represent these properties?
Introduce a state variable denoting the next transition.

Example

Recharge	$\stackrel{\text { def }}{=}$	```tr = Recharge }\wedge\mathrm{ customer = none } st_coffee' }^\mathrm{ st_beer' ^ only(st_coffee, st_beer, tr).```
Customer_arrives	$\stackrel{\text { def }}{=}$	```tr = Customer_arrives }\wedge\mathrm{ customer = none } customer' }=\mathrm{ none ^ only(customer, tr)```
Coin_insert	$\stackrel{\text { def }}{=}$	$\operatorname{tr}=$ Coin_insert \wedge customer \neq none \wedge coins $\neq 3 \wedge$ (coins $=0 \rightarrow$ coins $^{\prime}=1$) \wedge (coins $=1 \rightarrow$ coins $\left.^{\prime}=2\right) \wedge$ $\left(\right.$ coins $=2 \rightarrow$ coins $\left.^{\prime}=3\right) \wedge$ only(coins, tr).

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between getting them.

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between getting them.

$$
\square\left(\mathrm{tr}=\text { Dispense_beer } \rightarrow \bigcirc\left(\square \operatorname{tr} \neq \text { Dispence_beer } \vee \operatorname{tr}^{\square} \neq \text { Dispence_beer } \mathrm{U} \mathrm{tr}=\text { Insert_coin }\right)\right)
$$

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between getting them.

$$
\begin{aligned}
& \square(\operatorname{tr}=\text { Dispense_beer } \rightarrow \bigcirc(\square \operatorname{tr} \neq \text { Dispence_beer } \vee \\
& \operatorname{tr} \neq \text { Dispence_beer U tr = Insert_coin)) }
\end{aligned}
$$

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival.

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between getting them.

$$
\square\left(\mathrm{tr}=\text { Dispense_beer } \rightarrow \bigcirc\left(\square \operatorname{tr} \neq \text { Dispence_beer } \vee \operatorname{tr}^{\square} \neq \text { Dispence_beer } \mathrm{U} \mathrm{tr}=\text { Insert_coin }\right)\right)
$$

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival.

$$
\begin{aligned}
& \square(\operatorname{tr}=\text { Recharge } \rightarrow \text { 〇tr } \neq \text { Recharge }) \rightarrow \\
& \square(\operatorname{tr}=\text { Recharge } \rightarrow \text { 〇tr }=\text { Customer_arrives })
\end{aligned}
$$

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between getting them.

$$
\square(\mathrm{tr}=\text { Dispense_beer } \rightarrow \bigcirc \bigcirc(\square \operatorname{tr} \neq \text { Dispence_beer } \vee
$$

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival.

$$
\begin{aligned}
& \square(\operatorname{tr}=\text { Recharge } \rightarrow \text { 〇 } \operatorname{tr} \neq \text { Recharge }) \rightarrow \\
& \square(\operatorname{tr}=\text { Recharge } \rightarrow \text { 〇tr }=\text { Customer_arrives })
\end{aligned}
$$

3. The value of customer can only be changed as a result of either Customer_arrives or Customer_leaves.

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between getting them.

$$
\square(\mathrm{tr}=\text { Dispense_beer } \rightarrow \bigcirc(\square \operatorname{tr} \neq \text { Dispence_beer } \vee
$$

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival.

$$
\begin{aligned}
& \square \text { (tr }=\text { Recharge } \rightarrow \text { 〇 } \operatorname{tr} \neq \text { Recharge }) \rightarrow \\
& \square(\operatorname{tr}=\text { Recharge } \rightarrow \text { 〇tr }=\text { Customer_arrives })
\end{aligned}
$$

3. The value of customer can only be changed as a result of either Customer_arrives or Customer_leaves.

$$
\begin{aligned}
& \square\left(\Lambda_{v \in \text { dom(customer) }} \text { (customer }=v \wedge \text { Ocustomer } \neq v\right) \rightarrow \\
& \operatorname{tr}=\text { Customer_arrives } v \operatorname{tr}=\text { Customer_leaves) }
\end{aligned}
$$

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice and then gets a beer, then the amount of coins in the slot will not change.

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice and then gets a beer, then the amount of coins in the slot will not change.
$\Lambda_{v \in \operatorname{dom} \text { (coin) }} \square$ (customer $=v \wedge$
$\operatorname{tr}=$ Coin_insert \wedge
$\bigcirc \mathrm{tr}=$ Coin_insert \wedge
\bigcirc 〇tr $=$ Dispense_beer \rightarrow
\bigcirc © customer $=v$)

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice and then gets a beer, then the amount of coins in the slot will not change.

$$
\begin{aligned}
& \wedge_{v \in \text { dom_(coin) }} \square \text { (customer }=v \wedge \\
& \operatorname{tr}=\text { Coin_insert } \wedge \\
& \text { ○tr }=\text { Coin_insert } \wedge \\
& \bigcirc \bigcirc \operatorname{tr}=\text { Dispense_beer } \rightarrow \\
&\bigcirc \bigcirc \bigcirc \text { customer }=v)
\end{aligned}
$$

2. If the system is recharged from time to time, then after each Dispense_beer the customer will leave.

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice and then gets a beer, then the amount of coins in the slot will not change.

$$
\begin{aligned}
\wedge_{v \in \text { dom(coin) }} \square & \text { (customer }=v \wedge \\
& \operatorname{tr}=\text { Coin_insert } \wedge \\
& \bigcirc \text { tr }=\text { Coin_insert } \wedge \\
& \bigcirc \operatorname{tr}=\text { Dispense_beer } \rightarrow \\
& \bigcirc \bigcirc \text { ○customer }=v)
\end{aligned}
$$

2. If the system is recharged from time to time, then after each Dispense_beer the customer will leave.

$$
\begin{aligned}
& \square \Delta \mathrm{tr}=\text { Recharge } \rightarrow \\
& \square(\mathrm{tr}=\text { Dispense_beer } \rightarrow \Delta \operatorname{tr}=\text { Customer_leaves })
\end{aligned}
$$

End of Lecture 20

Slides for lecture 20 end here . . .

