Outline

LTL: Linear Temporal Logic

Computation Tree Linear Temporal Logic Using Temporal Formulas Equivalences of Temporal Formulas Expressing Transitions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Computation Tree

Let S = (S, In, T, X, dom, L) be a transition system and $s \in S$ be a state. The computation tree for S starting at s is the following (possibly infinite) tree.

- 1. The nodes of the tree are labeled by states in S.
- 2. The root of the tree is labeled by s.
- 3. For every node s' in the tree, its children are exactly such nodes $s'' \in S$ that $(s', s'') \in T$.

(ロ) (同) (三) (三) (三) (○) (○)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

A computation path for S: any branch s_0, s_1, \ldots in the tree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

A computation path for S: any branch s_0, s_1, \ldots in the tree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

A computation path for S: any branch s_0, s_1, \ldots in the tree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

Properties

Computation paths for a transition system are exactly all branches in the computation trees for this transition system.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Properties

- Computation paths for a transition system are exactly all branches in the computation trees for this transition system.
- Let *n* be a node in a computation tree *C* for S labeled by *s'*. Then the subtree of *C* rooted at *s'* is the computation tree for S starting at *s'*. In other words, every subtree of a computation tree rooted at some node is itself a computation tree.

(ロ) (同) (三) (三) (三) (○) (○)

Properties

- Computation paths for a transition system are exactly all branches in the computation trees for this transition system.
- Let n be a node in a computation tree C for S labeled by s'. Then the subtree of C rooted at s' is the computation tree for S starting at s'. In other words, every subtree of a computation tree rooted at some node is itself a computation tree.
- ► For every transition system S and state s there exists a unique computation tree for S starting at s, up to the order of children.

(ロ) (同) (三) (三) (三) (○) (○)

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

Formulas are built in the same way as in propositional logic, with the following additions:

- 1. If *F* is a formula, then $\bigcirc F$, $\square F$, and $\Diamond F$ are formulas;
- 2. If F and G are formulas, then $F \sqcup G$ and $F \land G$ are formulas.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

Formulas are built in the same way as in propositional logic, with the following additions:

- 1. If *F* is a formula, then $\bigcirc F$, $\square F$, and $\Diamond F$ are formulas;
- 2. If *F* and *G* are formulas, then *F* U *G* and *F* R *G* are formulas.

(ロ) (同) (三) (三) (三) (○) (○)

- O next
- always (in future)
- ♦ sometimes (in future)
- U until
- R release

Semantics (intuitive)

▲□▶▲圖▶▲≧▶▲≧▶ 差 のQの

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2...$ be a sequence of states and F be an LTL formula.

(ロ) (同) (三) (三) (三) (○) (○)

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2...$ be a sequence of states and F be an LTL formula.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We define the notion *F* is true on π (or *F* holds on π), denoted by $\pi \models F$, by induction on *F* as follows.

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2...$ be a sequence of states and F be an LTL formula.

We define the notion *F* is true on π (or *F* holds on π), denoted by $\pi \models F$, by induction on *F* as follows. For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

(日) (日) (日) (日) (日) (日) (日)

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2...$ be a sequence of states and F be an LTL formula.

(日) (日) (日) (日) (日) (日) (日)

We define the notion *F* is true on π (or *F* holds on π), denoted by $\pi \models F$, by induction on *F* as follows. For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2...$ be a sequence of states and F be an LTL formula.

(日) (日) (日) (日) (日) (日) (日)

We define the notion *F* is true on π (or *F* holds on π), denoted by $\pi \models F$, by induction on *F* as follows. For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2...$ be a sequence of states and F be an LTL formula.

(日) (日) (日) (日) (日) (日) (日)

We define the notion *F* is true on π (or *F* holds on π), denoted by $\pi \models F$, by induction on *F* as follows. For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

Unlike propositonal formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2...$ be a sequence of states and F be an LTL formula.

We define the notion *F* is true on π (or *F* holds on π), denoted by $\pi \models F$, by induction on *F* as follows. For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$). To define $\pi \models F$ we will use $\pi_i \models G$ for some *i* and *G*. We will sometimes (slightly informally) say that *G* is true in s_i or *G* holds in s_i to mean that *G* is true on π_i .

The semantics of propositional connectives is standard.

The semantics of propositional connectives is standard. Atomic formulas are true iff they are true in s_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0 .

The semantics of formulas built using propositional connectives on π is the same as in propositional logic where all subformulas are also evaluated on π .

(ロ) (同) (三) (三) (三) (○) (○)

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0 .

The semantics of formulas built using propositional connectives on π is the same as in propositional logic where all subformulas are also evaluated on π .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. $\pi \models \top$ and $\pi \not\models \bot$.

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0 .

The semantics of formulas built using propositional connectives on π is the same as in propositional logic where all subformulas are also evaluated on π .

(ロ) (同) (三) (三) (三) (○) (○)

1.
$$\pi \models \top$$
 and $\pi \not\models \bot$.

2.
$$\pi \models x = v$$
 if $s_0 \models x = v$.

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0 .

The semantics of formulas built using propositional connectives on π is the same as in propositional logic where all subformulas are also evaluated on π .

1. $\pi \models \top$ and $\pi \not\models \bot$. 2. $\pi \models x = v$ if $s_0 \models x = v$. 3. $\pi \models F_1 \land \ldots \land F_n$ if for all $j = 1, \ldots, n$ we have $\pi \models F_j$; $\pi \models F_1 \lor \ldots \lor F_n$ if for some $j = 1, \ldots, n$ we have $\pi \models F_j$. 4. $\pi \models \neg F$ if $\pi \not\models F$. 5. $\pi \models F \rightarrow G$ if either $\pi \not\models F$ or $\pi \models G$; $\pi \models F \leftrightarrow G$ if either both $\pi \not\models F$ and $\pi \not\models G$ or both $\pi \models F$ and $\pi \models G$.

Semantics of temporal operators 6. $\pi \models \bigcirc F$ if $\pi_1 \models F$;

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Semantics of temporal operators 6. $\pi \models \bigcirc F$ if $\pi_1 \models F$; $\pi \models \diamondsuit F$ if for some $k \ge 0$ we have $\pi_k \models F$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Semantics of temporal operators

S0

6.
$$\pi \models \bigcirc F$$
 if $\pi_1 \models F$;
 $\pi \models \Diamond F$ if for some $k \ge 0$ we have $\pi_k \models F$;
 $\pi \models \bigcirc F$ if for all $i \ge 0$ we have $\pi_i \models F$.

 S_1 S_2 S_{k-1} S_k S_{k+1}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Semantics of temporal operators

6.
$$\pi \models \bigcirc F$$
 if $\pi_1 \models F$;
 $\pi \models \Diamond F$ if for some $k \ge 0$ we have $\pi_k \models F$;
 $\pi \models \bigcirc F$ if for all $i \ge 0$ we have $\pi_i \models F$.
7. $\pi \models F \sqcup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and
 $\pi_0 \models F, \dots, \pi_{k-1} \models F$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Semantics of temporal operators

6.
$$\pi \models \bigcirc F$$
 if $\pi_1 \models F$;
 $\pi \models \Diamond F$ if for some $k \ge 0$ we have $\pi_k \models F$;
 $\pi \models \bigcirc F$ if for all $i \ge 0$ we have $\pi_i \models F$.
7. $\pi \models F \sqcup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and
 $\pi_0 \models F, \dots, \pi_{k-1} \models F$;
 $\pi \models F \mathbb{R} G$ if for all $k \ge 0$, either $\pi_k \models G$ or there exists $j < k$
such that $\pi_j \models F$.

$$S_0$$
 S_1 S_2 S_{k-1} S_k S_{k+1}

Semantics of temporal operators

6.
$$\pi \models \bigcirc F$$
 if $\pi_1 \models F$;
 $\pi \models \Diamond F$ if for some $k \ge 0$ we have $\pi_k \models F$;
 $\pi \models \bigcirc F$ if for all $i \ge 0$ we have $\pi_i \models F$.
7. $\pi \models F \sqcup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and
 $\pi_0 \models F, \dots, \pi_{k-1} \models F$;
 $\pi \models F \mathbb{R} G$ if for all $k \ge 0$, either $\pi_k \models G$ or there exists $j < k$
such that $\pi_j \models F$.

900

Standard properties???

Two LTL formulas *F* and *G* are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Standard properties???

Two LTL formulas *F* and *G* are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We are not interested in satisfiability, validity etc. for temporal formulas.

Standard properties???

Two LTL formulas *F* and *G* are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

We are not interested in satisfiability, validity etc. for temporal formulas.

For an LTL formula F we can consider two kinds of properties of S:

1. does *F* hold on some computation path for *S* from an initial state?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. does F hold on all computation paths for S from an initial state?

Precedences of Connectives and Temporal Operators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Connective	Precedence
$\neg, \bigcirc, \diamond, \square$ \mathbf{U}, \mathbf{R}	5 4
\wedge, \vee	3
\rightarrow	2
\leftrightarrow	1

1. *F* never holds in two consecutive states.

1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$

1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2. If *F* holds in a state *s*, it also holds in all states after *s*.

1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$

1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. F holds in at most one state.

1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. *F* holds in at most one state. $\Box(F \rightarrow \bigcirc \Box \neg F)$

1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. *F* holds in at most one state. $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 4. F holds in at least two states.

1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$

(日) (日) (日) (日) (日) (日) (日)

- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. *F* holds in at most one state. $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 4. *F* holds in at least two states. $(F \land \bigcirc \Diamond F)$

- 1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$
- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. *F* holds in at most one state. $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 4. *F* holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$
- 5. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} .

(日) (日) (日) (日) (日) (日) (日)

- 1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$
- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. *F* holds in at most one state. $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 4. *F* holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \square (\bigcirc \bigcirc F \to G \lor \bigcirc G)$

- 1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$
- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. *F* holds in at most one state. $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 4. *F* holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \square (\bigcirc \bigcirc F \to G \lor \bigcirc G)$

(日) (日) (日) (日) (日) (日) (日)

6. F happens infinitely often.

- 1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$
- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. *F* holds in at most one state. $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 4. *F* holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \square (\bigcirc \bigcirc F \to G \lor \bigcirc G)$

(日) (日) (日) (日) (日) (日) (日)

6. *F* happens infinitely often. $\Box \Diamond F$

- 1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$
- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. *F* holds in at most one state. $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 4. *F* holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \square (\bigcirc \bigcirc F \to G \lor \bigcirc G)$
- 6. *F* happens infinitely often. $\Box \Diamond F$
- F holds in each even state and does not hold in each odd state (states are counted from 0).

- 1. *F* never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$
- 2. If *F* holds in a state *s*, it also holds in all states after *s*. $\Box(F \rightarrow \Box F)$
- 3. *F* holds in at most one state. $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 4. *F* holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \square (\bigcirc \bigcirc F \to G \lor \bigcirc G)$
- 6. *F* happens infinitely often. $\Box \Diamond F$
- F holds in each even state and does not hold in each odd state (states are counted from 0). F ∧ □(F ↔ ○¬F).

Not all "reasonable" properties are expressible in LTL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

p holds in all even states.

End of Lecture 19

Slides for lecture 19 end here ...

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

◇□*F*;
□(*F* → ○*F*);
¬*F***U** □*F*;

- $\blacktriangleright \Diamond \Box F;$
- $\Box(F \to \bigcirc F);$
- ▶ $\neg F u \square F;$
- ► $F U \neg F$;

- ► ◊ □ *F*;
- $\Box(F \rightarrow \bigcirc F);$
- ▶ $\neg F \mathbf{U} \square F$;
- ► $F \mathbf{U} \neg F$;
- $\blacktriangleright \Diamond F \land \Box (F \to \bigcirc F);$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- ► ◊ □ *F*;
- $\Box(F \rightarrow \bigcirc F);$
- ▶ $\neg F u \square F;$
- ► $F \mathbf{U} \neg F$;
- $\blacktriangleright \Diamond F \land \Box (F \to \bigcirc F);$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

► __\\$*F*;

- ► ◊□*F*;
- $\Box(F \rightarrow \bigcirc F);$
- ▶ $\neg F \mathbf{U} \square F$;
- ► $F \mathbf{U} \neg F$;
- $\Diamond F \land \Box (F \to \bigcirc F);$
- ► __\\$*F*;
- ► $F \land \Box (F \leftrightarrow \neg \bigcirc F);$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Equivalences: Unwinding Properties

$\begin{array}{rcl} \Diamond F &\equiv& F \lor \bigcirc \Diamond F \\ \square F &\equiv& F \land \bigcirc \square F \\ F \amalg G &\equiv& G \lor (F \land \bigcirc (F \amalg G)) \\ F R G &\equiv& G \land (F \lor \bigcirc (F R G)) \end{array}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Equivalences: Negation of Temporal Operators

$$\neg \bigcirc F \equiv \bigcirc \neg F$$
$$\neg \Diamond F \equiv \bigcirc \neg F$$
$$\neg \bigcirc F \equiv \bigcirc \neg F$$
$$\neg \bigcirc F \equiv \Diamond \neg F$$
$$\neg (F \sqcup G) \equiv \neg F \R \neg G$$
$$\neg (F \R G) \equiv \neg F \amalg \neg G$$

Expressing Temporal Operators Using U

$$\begin{array}{l} \Diamond F &\equiv \ \top \mathbf{U} F \\ \Box F &\equiv \ \neg (\top \mathbf{U} \neg F) \\ F \mathbf{R} G &\equiv \ \neg (\neg F \mathbf{U} \neg G). \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Therefore, all operators can be expressed using \bigcirc and \mathbf{U} .

Other Equivalences

$\begin{array}{rcl} \Diamond(F \lor G) & \equiv & \Diamond F \lor \Diamond G \\ \Box(F \land G) & \equiv & \Box F \land \Box G \end{array}$

But

$\begin{array}{ccc} \Box(F \lor G) & \neq & \Box F \lor \Box G \\ \Diamond(F \land G) & \neq & \Diamond F \land \Diamond G \end{array}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

How to Show that Two Formulas are not Equivalent?

Find a path that satisfies one of the formulas but not the other. For example for \Box (*F* \lor *G*) and \Box *F* \lor \Box *G*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Formalization: Variables and Domains

variable	domain	explanation
st_coffee	{0,1}	drink storage contains coffee
st_beer	{0, 1}	drink storage contains beer
disp	{none, beer, coffee}	content of drink dispenser
coins	<i>{0</i> , <i>1</i> , <i>2</i> , <i>3}</i>	number of coins in the slot
customer	{none, student, prof}	customer

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Transitions

- 1. *Recharge* which results in the drink storage having both beer and coffee.
- 2. *Customer_arrives*, after which a customer appears at the machine.
- 3. *Customer_leaves*, after which the customer leaves.
- 4. *Coin_insert*, when the customer inserts a coin in the machine.
- 5. *Dispense_beer*, when the customer presses the button to get a can of beer.
- 6. *Dispense_coffee*, when the customer presses the button to get a cup of coffee.

(ロ) (同) (三) (三) (三) (○) (○)

7. *Take_drink*, when the customer removes a drink from the dispenser.

Reasoning About Transitions

Consider the following properties:

- 1. "one cannot have two beers in a row without inserting a coin".
- 2. "If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival".

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Note that they are about transitions, not about states.

Reasoning About Transitions

Consider the following properties:

- 1. "one cannot have two beers in a row without inserting a coin".
- 2. "If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival".

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Note that they are about transitions, not about states.

How can one represent these properties?

Reasoning About Transitions

Consider the following properties:

- 1. "one cannot have two beers in a row without inserting a coin".
- 2. "If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival".

(ロ) (同) (三) (三) (三) (○) (○)

Note that they are about transitions, not about states.

How can one represent these properties?

Introduce a state variable denoting the next transition.

Example

Recharge	$\begin{array}{l} \mbox{tr} = \textit{Recharge} \land \mbox{customer} = \textit{none} \land \\ \mbox{st_coffee}' \land \mbox{st_beer}' \land \\ \mbox{only}(\mbox{st_coffee}, \mbox{st_beer}, \mbox{tr}). \end{array}$
<i>Customer_arrives</i>	$\begin{array}{l} \mbox{tr} = \mbox{Customer}_\mbox{arrives} \land \mbox{customer} = \mbox{none} \land \\ \mbox{customer}' \neq \mbox{none} \land \\ \mbox{only}(\mbox{customer},\mbox{tr}) \end{array}$
Coin₋insert	$\begin{array}{l} tr = \textit{Coin_insert} \land \\ customer \neq \textit{none} \land coins \neq 3 \land \\ (coins = 0 \to coins' = 1) \land \\ (coins = 1 \to coins' = 2) \land \\ (coins = 2 \to coins' = 3) \land \\ \textit{only}(coins, tr). \end{array}$

1. One cannot have two beers without inserting a coin in between getting them.

1. One cannot have two beers without inserting a coin in between getting them.

 $\Box(tr = Dispense_beer \rightarrow \bigcirc (\Box tr \neq Dispence_beer \lor tr \neq Dispence_beer Utr = Insert_coin))$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

1. One cannot have two beers without inserting a coin in between getting them.

 $\Box(tr = Dispense_beer \rightarrow \bigcirc (\Box tr \neq Dispence_beer \lor tr \neq Dispence_beer U tr = Insert_coin))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival.

1. One cannot have two beers without inserting a coin in between getting them.

 $\Box(tr = Dispense_beer \rightarrow \bigcirc (\Box tr \neq Dispence_beer \lor tr \neq Dispence_beer Utr = Insert_coin))$

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival.

 $\Box(tr = Recharge \rightarrow \bigcirc tr \neq Recharge) \rightarrow \\ \Box(tr = Recharge \rightarrow \bigcirc tr = Customer_arrives)$

(日) (日) (日) (日) (日) (日) (日)

1. One cannot have two beers without inserting a coin in between getting them.

 $\Box(tr = Dispense_beer \rightarrow \bigcirc (\Box tr \neq Dispence_beer \lor tr \neq Dispence_beer U tr = Insert_coin))$

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival.

 $\Box(tr = Recharge \rightarrow \bigcirc tr \neq Recharge) \rightarrow \\ \Box(tr = Recharge \rightarrow \bigcirc tr = Customer_arrives)$

3. The value of customer can only be changed as a result of either *Customer_arrives* or *Customer_leaves*.

1. One cannot have two beers without inserting a coin in between getting them.

 $\Box(tr = Dispense_beer \rightarrow \bigcirc (\Box tr \neq Dispence_beer \lor tr \neq Dispence_beer Utr = Insert_coin))$

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival.

 $\Box(tr = Recharge \rightarrow \bigcirc tr \neq Recharge) \rightarrow \\ \Box(tr = Recharge \rightarrow \bigcirc tr = Customer_arrives)$

3. The value of customer can only be changed as a result of either *Customer_arrives* or *Customer_leaves*.

 $\Box(\bigwedge_{v \in dom(customer)}(customer = v \land \bigcirc customer \neq v) \rightarrow tr = Customer_arrives \lor tr = Customer_leaves)$

1. If somebody inserts a coin twice and then gets a beer, then the amount of coins in the slot will not change.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1. If somebody inserts a coin twice and then gets a beer, then the amount of coins in the slot will not change.

(日) (日) (日) (日) (日) (日) (日)

1. If somebody inserts a coin twice and then gets a beer, then the amount of coins in the slot will not change.

(ロ) (同) (三) (三) (三) (○) (○)

2. If the system is recharged from time to time, then after each *Dispense_beer* the customer will leave.

1. If somebody inserts a coin twice and then gets a beer, then the amount of coins in the slot will not change.

2. If the system is recharged from time to time, then after each *Dispense_beer* the customer will leave.

 $\Box \Diamond tr = Recharge \rightarrow \\ \Box (tr = Dispense_beer \rightarrow \Diamond tr = Customer_leaves)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

End of Lecture 20

Slides for lecture 20 end here ...

