
Outline

Model Checking
Model Checking Problem
Safety Properties and Reachability
Symbolic Reachability Checking

Putting it All Together

When we design a system, we would like to be sure that it will satisfy
all requirements, such as safety.

Now we can treat the safety problem as a mathematical problem. We
can

I formally represent our system as a transition system (the
symbolic representation);

I express the desired properties of the system in temporal logic.

What is missing?

Putting it All Together

When we design a system, we would like to be sure that it will satisfy
all requirements, such as safety.

Now we can treat the safety problem as a mathematical problem. We
can

I formally represent our system as a transition system (the
symbolic representation);

I express the desired properties of the system in temporal logic.

What is missing?

Putting it All Together

When we design a system, we would like to be sure that it will satisfy
all requirements, such as safety.

Now we can treat the safety problem as a mathematical problem. We
can

I formally represent our system as a transition system (the
symbolic representation);

I express the desired properties of the system in temporal logic.

What is missing?

The Model Checking Problem

Given

1. a symbolic representation of a transition system;
2. a temporal formula F ,

check if every (some) computation of the system satisfies this
formula, preferably in a fully automatic way.

Symbolic Representation and Transition Systems

Consider the transition systems with the following state transition
graphs:

x = 0x = 1s1: s2:

x = 0x = 1s1: s2:

x = 1s0:

They have the same symbolic representation but satisfy different LTL
formulas. For example, ♦¬x is true in the first one but false in the
second.

This may happen only if one of the transition systems has more than
one different state with the same labelling function (states s0 and s1 in
the second system).
We call such symbolic representations inadequate: one cannot
distinguish two different states by a formula.

Symbolic Representation and Transition Systems

Consider the transition systems with the following state transition
graphs:

x = 0x = 1s1: s2:

x = 0x = 1s1: s2:

x = 1s0:

They have the same symbolic representation but satisfy different LTL
formulas. For example, ♦¬x is true in the first one but false in the
second.
This may happen only if one of the transition systems has more than
one different state with the same labelling function (states s0 and s1 in
the second system).

We call such symbolic representations inadequate: one cannot
distinguish two different states by a formula.

Symbolic Representation and Transition Systems

Consider the transition systems with the following state transition
graphs:

x = 0x = 1s1: s2:

x = 0x = 1s1: s2:

x = 1s0:

They have the same symbolic representation but satisfy different LTL
formulas. For example, ♦¬x is true in the first one but false in the
second.
This may happen only if one of the transition systems has more than
one different state with the same labelling function (states s0 and s1 in
the second system).
We call such symbolic representations inadequate: one cannot
distinguish two different states by a formula.

Making an Adequate Representation

If a transition system has different states labeled by the same
interpretation, then introduce a new state variable that will distinguish
any such pair of states.

For example, one can add a variable cs (current state) ranging over
all states such the value of cs at a state s is s.

x = 0
cs = s2

x = 1
cs = s1

s1: s2:

x = 1
cs = s0

s0:

We assume that different states always have different labellings.

Making an Adequate Representation

If a transition system has different states labeled by the same
interpretation, then introduce a new state variable that will distinguish
any such pair of states.

For example, one can add a variable cs (current state) ranging over
all states such the value of cs at a state s is s.

x = 0
cs = s2

x = 1
cs = s1

s1: s2:

x = 1
cs = s0

s0:

We assume that different states always have different labellings.

Making an Adequate Representation

If a transition system has different states labeled by the same
interpretation, then introduce a new state variable that will distinguish
any such pair of states.

For example, one can add a variable cs (current state) ranging over
all states such the value of cs at a state s is s.

x = 0
cs = s2

x = 1
cs = s1

s1: s2:

x = 1
cs = s0

s0:

We assume that different states always have different labellings.

Reachability and Safety Properties
A reachability property is expressed by a formula

♦F ,

where F is a propositional formula.

A safety property is expressed by a formula

F ,

where F is a propositional formula.

Reachability and safety properties are the most common problems
arising in model checking. They are dual to each other: if we can
check one of them, we can check the other one too:

I F ≡ ¬♦¬F ;
I ♦F ≡ ¬ ¬F .

We cannot reach an unsafe state if and only if all states we can visit
are safe.

Reachability and Safety Properties
A reachability property is expressed by a formula

♦F ,

where F is a propositional formula.

A safety property is expressed by a formula

F ,

where F is a propositional formula.

Reachability and safety properties are the most common problems
arising in model checking. They are dual to each other: if we can
check one of them, we can check the other one too:

I F ≡ ¬♦¬F ;
I ♦F ≡ ¬ ¬F .

We cannot reach an unsafe state if and only if all states we can visit
are safe.

Reachability and Safety Properties
A reachability property is expressed by a formula

♦F ,

where F is a propositional formula.

A safety property is expressed by a formula

F ,

where F is a propositional formula.

Reachability and safety properties are the most common problems
arising in model checking. They are dual to each other: if we can
check one of them, we can check the other one too:

I F ≡ ¬♦¬F ;
I ♦F ≡ ¬ ¬F .

We cannot reach an unsafe state if and only if all states we can visit
are safe.

Reachability and Safety Properties
A reachability property is expressed by a formula

♦F ,

where F is a propositional formula.

A safety property is expressed by a formula

F ,

where F is a propositional formula.

Reachability and safety properties are the most common problems
arising in model checking. They are dual to each other: if we can
check one of them, we can check the other one too:

I F ≡ ¬♦¬F ;
I ♦F ≡ ¬ ¬F .

We cannot reach an unsafe state if and only if all states we can visit
are safe.

Reachability

Fix a transition system S with the transition relation T . We write
s0 → s1 for (s0, s1) ∈ T (that is, if there is a transition from s0 to s1).

I A state s is reachable in n steps from a state s0 if there exists a
sequence of states s1, . . . , sn such that sn = s and

s0 → s1 → . . .→ sn.

I A state s is reachable from a state s0 if s is reachable from s0 in
n ≥ 0 steps.

Reachability

Fix a transition system S with the transition relation T . We write
s0 → s1 for (s0, s1) ∈ T (that is, if there is a transition from s0 to s1).

I A state s is reachable in n steps from a state s0 if there exists a
sequence of states s1, . . . , sn such that sn = s and

s0 → s1 → . . .→ sn.

I A state s is reachable from a state s0 if s is reachable from s0 in
n ≥ 0 steps.

Reachability

Fix a transition system S with the transition relation T . We write
s0 → s1 for (s0, s1) ∈ T (that is, if there is a transition from s0 to s1).

I A state s is reachable in n steps from a state s0 if there exists a
sequence of states s1, . . . , sn such that sn = s and

s0 → s1 → . . .→ sn.

I A state s is reachable from a state s0 if s is reachable from s0 in
n ≥ 0 steps.

Reachability Properties and Graph Reachability

Theorem. Let F be a propositional formula. The formula ♦F holds on
some computation path if and only if there exists an initial state s0
and a state s such that s |= F and s is reachable from s0.

Reformulation of Reachability

Given

1. Initial condition I representing a set of initial states;
2. Final condition F representing a set of final states;
3. formula Tr representing the transition relation of a transition

system S,

is any final state reachable from an initial state in S?

An interesting property of this reformulation is that it does not use
temporal logic.

Reformulation of Reachability

Given

1. Initial condition I representing a set of initial states;
2. Final condition F representing a set of final states;
3. formula Tr representing the transition relation of a transition

system S,

is any final state reachable from an initial state in S?

An interesting property of this reformulation is that it does not use
temporal logic.

Symbolic Reachability Checking

I Idea: build a symbolic representation of the set of reachable
states.

I Two main kinds of algorithm:
I forward reachability;
I backward reachability.

Symbolic Reachability Checking

I Idea: build a symbolic representation of the set of reachable
states.

I Two main kinds of algorithm:
I forward reachability;
I backward reachability.

Reformulation as a Decision Problem

Given

1. a formula I(x̄), called the initial condition;
2. a formula F (x̄), called the final condition;
3. formula T (x̄ , x̄ ′), called the transition formula

does there exist a sequence of states s0, . . . , sn such that

1. s0 |= I(x̄);
2. sn |= F (x̄);
3. For all i = 0, . . . ,n − 1 we have (si−1, si) |= T (x̄ , x̄ ′).

Note that in this case sn is reachable from s0 in n steps.

Idea of Reachability-Checking Algorithms

If a final state is reachable from an initial state, then it is reachable
from an initial state in some number n of steps.

For a given number n, find a symbolic representation of the set of
states reachable from from an initial state in n steps. If this formula is
not satisfied in a final state, increase n and start again.

Idea of Reachability-Checking Algorithms

If a final state is reachable from an initial state, then it is reachable
from an initial state in some number n of steps.

For a given number n, find a symbolic representation of the set of
states reachable from from an initial state in n steps. If this formula is
not satisfied in a final state, increase n and start again.

Reachability in n steps

Number of steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

Reachability in n steps

Number of steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

BAD

Reachability in n steps

Number of steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7 BAD

Reachability in n steps

Number of steps: 2

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

BAD

BAD

Reachability in n steps

Number of steps: 3

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7 BAD

BADBAD

Reachability in n steps

Number of steps: 4

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADBADs5

BADs6

BAD

s7

BAD

BADBAD

Simple Logical Analysis

Lemma
Let C(x̄) symbolically represent a set of states S. Define

FR(x̄)
def
= ∃x̄1(C(x̄1) ∧ T (x̄1, x̄)).

Then FR(x̄) represents the set of states reachable from S in one step.

Define a sequence of formulas Rn for reachability in n states:

R0(x̄)
def
= I(x̄)

Rn+1(x̄)
def
= ∃x̄1(Rn(x̄1) ∧ T (x̄ , x̄1))

Simple Logical Analysis

Lemma
Let C(x̄) symbolically represent a set of states S. Define

FR(x̄)
def
= ∃x̄1(C(x̄1) ∧ T (x̄1, x̄)).

Then FR(x̄) represents the set of states reachable from S in one step.
Define a sequence of formulas Rn for reachability in n states:

R0(x̄)
def
= I(x̄)

Rn+1(x̄)
def
= ∃x̄1(Rn(x̄1) ∧ T (x̄ , x̄1))

End of Lecture 21

Slides for lecture 21 end here . . .

Reachability in n Steps Using SAT
Let n ≥ 0 and x̄ be state variables. Let

1. I(x̄) the symbolic representation of the set of initial states;
2. T (x̄ , x̄ ′) the symbolic representation of the transition relation;
3. F (x̄) be a propositional formula of this variables;

Then a state satisfying F (x̄) is reachable in n steps if and only if the
following propositional formula is satisfiable:

I(x̄0) ∧ T (x̄0, x̄1) ∧ . . . ∧ T (x̄n−1, x̄n) ∧ F (x̄n).

Further, take any satisfying assignment {x̄0 7→ v̄0, . . . , x̄n 7→ v̄n} for
this formula and define states s0, . . . , sn by si

def
= {x̄ 7→ v̄i}. Then we

have that s0 |= I(x̄), sn |= F (x̄) and

s0 → s1 → . . .→ sn−1 → sn

In other words, solutions to the formula define paths leading from an
initial state to a state satisfying F (x̄).

Reachability in n Steps Using SAT
Let n ≥ 0 and x̄ be state variables. Let

1. I(x̄) the symbolic representation of the set of initial states;
2. T (x̄ , x̄ ′) the symbolic representation of the transition relation;
3. F (x̄) be a propositional formula of this variables;

Then a state satisfying F (x̄) is reachable in n steps if and only if the
following propositional formula is satisfiable:

I(x̄0) ∧ T (x̄0, x̄1) ∧ . . . ∧ T (x̄n−1, x̄n) ∧ F (x̄n).

Further, take any satisfying assignment {x̄0 7→ v̄0, . . . , x̄n 7→ v̄n} for
this formula and define states s0, . . . , sn by si

def
= {x̄ 7→ v̄i}. Then we

have that s0 |= I(x̄), sn |= F (x̄) and

s0 → s1 → . . .→ sn−1 → sn

In other words, solutions to the formula define paths leading from an
initial state to a state satisfying F (x̄).

Simple Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or no output
begin
i := 0
R := I(x̄0) ;
loop

if R ∧ F (x̄i) is satisfiable then return “yes” ;
R := R ∧ T (x̄i , x̄i+1) ;
i := i + 1

end loop
end

Implementation?
Use SAT solvers.

Simple Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or no output
begin
i := 0
R := I(x̄0) ;
loop

if R ∧ F (x̄i) is satisfiable then return “yes” ;
R := R ∧ T (x̄i , x̄i+1) ;
i := i + 1

end loop
end

Implementation?

Use SAT solvers.

Simple Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or no output
begin
i := 0
R := I(x̄0) ;
loop

if R ∧ F (x̄i) is satisfiable then return “yes” ;
R := R ∧ T (x̄i , x̄i+1) ;
i := i + 1

end loop
end

Implementation?
Use SAT solvers.

Termination?

Number of steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

When no final state is reachable, the algorithm does not terminate.

Termination?

Number of steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7 BAD

When no final state is reachable, the algorithm does not terminate.

Termination?

Number of steps: 2

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

When no final state is reachable, the algorithm does not terminate.

Termination?

Number of steps: 3

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7 BAD

BADBAD

When no final state is reachable, the algorithm does not terminate.

Termination?

Number of steps: 4

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate.

Termination?

Number of steps: 5

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7 BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate.

Termination?

Number of steps: 6

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate.

Termination?

Number of steps: 7

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7 BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate.

Reachability in ≤ n steps

Define a sequence of formulas R≤n for reachability in ≤ n states:

R≤0(x̄)
def
= I(x̄)

R≤n+1(x̄)
def
= R≤n(x̄) ∨ ∃x̄1(R≤n(x̄1) ∧ T (x̄ , x̄1))

Reachability in ≤ n steps

Number of steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

The set of states will change no more.

Reachability in ≤ n steps

Number of steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

The set of states will change no more.

Reachability in ≤ n steps

Number of steps: 2

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

The set of states will change no more.

Reachability in ≤ n steps

Number of steps: 3

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

The set of states will change no more.

Reachability in ≤ n steps

Number of steps: 4

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

The set of states will change no more.

Reachability in ≤ n steps

Number of steps: 5

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

The set of states will change no more.

Termination

Denote by Sn the set of states reachable from an initial state in ≤ n
steps.
Key properties for termination.

I Si ⊆ Si+1 for all i ;
I the system has a finite number of states;
I therefore, there exists a number k such that Sk = Sk+1;
I for such k we have R≤k (x̄) ≡ R≤k+1(x̄).

Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or “no”
begin
R(x̄) := I(x̄) ;
loop

if R(x̄) ∧ F (x̄) is satisfiable then return “yes” ;
R′(x̄) := R(x̄) ∨ ∃x̄1(R(x̄1) ∧ T (x̄1, x̄)) ;
if R(x̄) ≡ R′(x̄) then return “no” ;
R(x̄) := R′(x̄)

end loop
end

Implementation?
Use OBDDs and OBDD
algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or “no”
begin
R(x̄) := I(x̄) ;
loop

if R(x̄) ∧ F (x̄) is satisfiable then return “yes” ;
R′(x̄) := R(x̄) ∨ ∃x̄1(R(x̄1) ∧ T (x̄1, x̄)) ;
if R(x̄) ≡ R′(x̄) then return “no” ;
R(x̄) := R′(x̄)

end loop
end

Implementation?

Use OBDDs and OBDD
algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or “no”
begin
R(x̄) := I(x̄) ;
loop

if R(x̄) ∧ F (x̄) is satisfiable then return “yes” ;
R′(x̄) := R(x̄) ∨ ∃x̄1(R(x̄1) ∧ T (x̄1, x̄)) ;
if R(x̄) ≡ R′(x̄) then return “no” ;
R(x̄) := R′(x̄)

end loop
end

Implementation?
Use OBDDs and OBDD
algorithms

Conjunction and disjunction

Quantification
Satisfiability checking
Equivalence checking

Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or “no”
begin
R(x̄) := I(x̄) ;
loop

if R(x̄) ∧ F (x̄) is satisfiable then return “yes” ;
R′(x̄) := R(x̄) ∨ ∃x̄1(R(x̄1) ∧ T (x̄1, x̄)) ;
if R(x̄) ≡ R′(x̄) then return “no” ;
R(x̄) := R′(x̄)

end loop
end

Implementation?
Use OBDDs and OBDD
algorithms

Conjunction and disjunction
Quantification

Satisfiability checking
Equivalence checking

Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or “no”
begin
R(x̄) := I(x̄) ;
loop

if R(x̄) ∧ F (x̄) is satisfiable then return “yes” ;
R′(x̄) := R(x̄) ∨ ∃x̄1(R(x̄1) ∧ T (x̄1, x̄)) ;
if R(x̄) ≡ R′(x̄) then return “no” ;
R(x̄) := R′(x̄)

end loop
end

Implementation?
Use OBDDs and OBDD
algorithms

Conjunction and disjunction
Quantification
Satisfiability checking

Equivalence checking

Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or “no”
begin
R(x̄) := I(x̄) ;
loop

if R(x̄) ∧ F (x̄) is satisfiable then return “yes” ;
R′(x̄) := R(x̄) ∨ ∃x̄1(R(x̄1) ∧ T (x̄1, x̄)) ;
if R(x̄) ≡ R′(x̄) then return “no” ;
R(x̄) := R′(x̄)

end loop
end

Implementation?
Use OBDDs and OBDD
algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

Forward Reachability Algorithm

procedure FReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or “no”
begin
R(x̄) := I(x̄) ;
loop

if R(x̄) ∧ F (x̄) is satisfiable then return “yes” ;
R′(x̄) := R(x̄) ∨ ∃x̄1(R(x̄1) ∧ T (x̄1, x̄)) ;
if R(x̄) ≡ R′(x̄) then return “no” ;
R(x̄) := R′(x̄)

end loop
end

Implementation?
Use OBDDs and OBDD
algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

Main Problems with the Forward Reachability
Algorithms

Forward reachability behave in the same way independently of the set
of final states.

In other words, they are not goal oriented.

Backward Reachability

in ≤ n steps

Idea:
I instead of going forward in the state transition graph, go

backward;
I swap initial and final states and invert the transition relation.

Number of backward steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

Unreachable!

Backward Reachability in ≤ n steps
Idea:

I instead of going forward in the state transition graph, go
backward;

I swap initial and final states and invert the transition relation.

Number of backward steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

Unreachable!

Backward Reachability in ≤ n steps
Idea:

I instead of going forward in the state transition graph, go
backward;

I swap initial and final states and invert the transition relation.

Number of backward steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADBADs6

BAD

s7

Unreachable!

Backward Reachability in ≤ n steps
Idea:

I instead of going forward in the state transition graph, go
backward;

I swap initial and final states and invert the transition relation.

Number of backward steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADBADs6

BAD

s7

Unreachable!

Backward Reachability in n steps

Number of backward steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADBADs5

BADs6

BAD

s7

Reachable!

Backward Reachability in n steps

Number of backward steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BADBAD

s4

BADs5

BADs6

BAD

s7

Reachable!

Backward Reachability in n steps

Number of backward steps: 2

BADs0

BADs1

BAD s2

BADBAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

Reachable!

Backward Reachability in n steps

Number of backward steps: 3

BADs0

BADBADs1

BAD s2

BADBAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

Reachable!

Backward Reachability in n steps

Number of backward steps: 4

BADBADs0

BADBADs1

BADBAD s2

BADBAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

Reachable!

Backward Reachability

If Sn is reachable from S0 in n steps, we say that S0 is backward
reachable from S0 in n steps.

Lemma
Let C(x̄) symbolically represent a set of states S. Define

BR(x̄)
def
= ∃x̄1(C(x̄1) ∧ T (x̄ , x̄1)).

Then BR(x̄) represents the set of states backward reachable from S
in one step.

Backward Reachability

If Sn is reachable from S0 in n steps, we say that S0 is backward
reachable from S0 in n steps.

Lemma
Let C(x̄) symbolically represent a set of states S. Define

BR(x̄)
def
= ∃x̄1(C(x̄1) ∧ T (x̄ , x̄1)).

Then BR(x̄) represents the set of states backward reachable from S
in one step.

Backward Reachability Algorithm

Same as the forward reachability algorithms, but

I Swap I with F ;
I Use the inverse of the transition relation T .

procedure BReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or “no”
begin

R(x̄) := F (x̄) ;
loop
if R(x̄) ∧ I(x̄) is satisfiable then return “yes” ;
R′(x̄) := R(x̄) ∨ ∃x̄1(R(x̄1) ∧ T (x̄ , x̄1)) ;
if R(x̄) ≡ R′(x̄) then return “no” ;
R(x̄) := R′(x̄)

end loop
end

Backward Reachability Algorithm

Same as the forward reachability algorithms, but

I Swap I with F ;
I Use the inverse of the transition relation T .

procedure BReach(I,T ,F)
input: formulas I,T ,F
output: “yes” or “no”
begin
R(x̄) := F (x̄) ;
loop

if R(x̄) ∧ I(x̄) is satisfiable then return “yes” ;
R′(x̄) := R(x̄) ∨ ∃x̄1(R(x̄1) ∧ T (x̄ , x̄1)) ;
if R(x̄) ≡ R′(x̄) then return “no” ;
R(x̄) := R′(x̄)

end loop
end

Other Properties

I There are model-checking algorithms for properties other than
reachability;

I there is even a general model-checking algorithm for arbitrary
LTL properties;

I these algorithms will not be considered in this course;

Other Properties

I There are model-checking algorithms for properties other than
reachability;

I there is even a general model-checking algorithm for arbitrary
LTL properties;

I these algorithms will not be considered in this course;

Other Properties

I There are model-checking algorithms for properties other than
reachability;

I there is even a general model-checking algorithm for arbitrary
LTL properties;

I these algorithms will not be considered in this course;

End of Lecture 22

Slides for lecture 22 end here . . .

	Model Checking
	Model Checking Problem
	Safety Properties and Reachability
	Symbolic Reachability Checking

