
Outline

Propositional Logic of Finite Domains
Logic and Modelling
State-changing systems
PLFD
PLFD and propositional logic

Logic and Modelling

Satisfiability-checking in propositional logic has many applications.

There is a gap between real-life problems and their representation in
propositional logic.

Many application domains have special modelling languages for
describing applications. Descriptions written in these languages can
then be translated to propositional logic . . .

because propositional logic is not convenient for modelling.

Logic and Modelling

Satisfiability-checking in propositional logic has many applications.

There is a gap between real-life problems and their representation in
propositional logic.

Many application domains have special modelling languages for
describing applications. Descriptions written in these languages can
then be translated to propositional logic . . .

because propositional logic is not convenient for modelling.

Logic and Modelling

Satisfiability-checking in propositional logic has many applications.

There is a gap between real-life problems and their representation in
propositional logic.

Many application domains have special modelling languages for
describing applications. Descriptions written in these languages can
then be translated to propositional logic . . .

because propositional logic is not convenient for modelling.

Logic and Modelling

Satisfiability-checking in propositional logic has many applications.

There is a gap between real-life problems and their representation in
propositional logic.

Many application domains have special modelling languages for
describing applications. Descriptions written in these languages can
then be translated to propositional logic . . .

because propositional logic is not convenient for modelling.

Circuit Design

library ieee;
use ieee.std logic 1164.all;
entity FULL ADDER is

port (A, B, Cin : in std logic;
Sum, Cout : out std logic);

end FULL ADDER;
architecture BEHAV FA of FULL ADDER is
signal int1, int2, int3: std logic;
begin
P1: process (A, B)
begin
int1<= A xor B;
int2<= A and B;

end process;
P2: process (int1, int2, Cin)
begin
Sum <= int1 xor Cin;
int3 <= int1 and Cin;
Cout <= int2 or int3;

end process;
end BEHAV FA;

Circuit: propositional
logic

Design: high-level
description (VHDL)

Circuit Design

library ieee;
use ieee.std logic 1164.all;
entity FULL ADDER is
port (A, B, Cin : in std logic;
Sum, Cout : out std logic);

end FULL ADDER;
architecture BEHAV FA of FULL ADDER is
signal int1, int2, int3: std logic;
begin
P1: process (A, B)
begin
int1<= A xor B;
int2<= A and B;

end process;
P2: process (int1, int2, Cin)
begin
Sum <= int1 xor Cin;
int3 <= int1 and Cin;
Cout <= int2 or int3;

end process;
end BEHAV FA;

Circuit: propositional
logic

Design: high-level
description (VHDL)

Scheduling

Constraints on Solutions

Rooms should have
a sufficient number
of seats.

A teacher cannot
teach two courses at
the same time.

Andrei cannot teach
at 9am.

State-changing systems

Our main interest from now on is modelling state-changing systems.

Informally

Formally

At each time moment, the sys-
tem is in a particular state.

This state can be characterised
by values of some variables,
called the state variables.

The system state is changing in
time. There are actions (con-
trolled or not) that change the
state.

Actions change values of some
state variables.

State-changing systems

Our main interest from now on is modelling state-changing systems.

Informally Formally

At each time moment, the sys-
tem is in a particular state.

This state can be characterised
by values of some variables,
called the state variables.

The system state is changing in
time. There are actions (con-
trolled or not) that change the
state.

Actions change values of some
state variables.

Examples

I Reactive systems.
Reactive systems are systems whose role is to maintain an
ongoing interaction with their environment rather than produce
some final value upon termination. Typical examples of reactive
systems are air traffic control system, programs controlling
mechanical devices such as a train, a plane, or ongoing
processes such as a nuclear reactor.

I Concurrent systems.
Concurrency is a property of systems in which several
computations are executing simultaneously, and potentially
interacting with each other. A typical example is a computer
operating system.

Examples

I Reactive systems.
Reactive systems are systems whose role is to maintain an
ongoing interaction with their environment rather than produce
some final value upon termination. Typical examples of reactive
systems are air traffic control system, programs controlling
mechanical devices such as a train, a plane, or ongoing
processes such as a nuclear reactor.

I Concurrent systems.
Concurrency is a property of systems in which several
computations are executing simultaneously, and potentially
interacting with each other. A typical example is a computer
operating system.

Reasoning about state-changing systems

1. Build a formal model of this state-changing system which
describes, in particular, functioning of the system, or some
abstraction thereof.

2. Use a logic to specify and verify properties of the system.

Reasoning about state-changing systems

1. Build a formal model of this state-changing system which
describes, in particular, functioning of the system, or some
abstraction thereof.

2. Use a logic to specify and verify properties of the system.

Propositional Logic of Finite Domains (PLFD)

Our first step to modelling state-changing systems is to introduce a
logic in which we can express values of variables in state.

PLFD is a family of logics. Each instance of PLFD is characterised by

I a set X of variables;
I a mapping dom, such that for every x ∈ X , dom(x) is a

non-empty finite set, called the domain for x .

Propositional Logic of Finite Domains (PLFD)

Our first step to modelling state-changing systems is to introduce a
logic in which we can express values of variables in state.

PLFD is a family of logics. Each instance of PLFD is characterised by

I a set X of variables;
I a mapping dom, such that for every x ∈ X , dom(x) is a

non-empty finite set, called the domain for x .

Syntax of PLFD

Formulas

I If x is a variable and v ∈ dom(x) is a value in the domain of x ,
then x = v is a formula, also called atomic formula, or simply
atom.

I Other formulas are built from atomic formulas as in propositional
logic, using the connectives >, ⊥, ∧, ∨, ¬, →, and ↔.

Syntax of PLFD

Formulas

I If x is a variable and v ∈ dom(x) is a value in the domain of x ,
then x = v is a formula, also called atomic formula, or simply
atom.

I Other formulas are built from atomic formulas as in propositional
logic, using the connectives >, ⊥, ∧, ∨, ¬, →, and ↔.

Semantics

I Interpretation for a set of variables X is a mapping I from X to
the set of values such that for all x ∈ X we have I(x) ∈ dom(x).

I Extend interpretations to mappings from formulas to boolean
values.

1. I(x = v) = 1 if and only if I(x) = v .
2. If A is not atomic, then as for propositional formulas.

I The definitions of truth, models, validity, satisfiability, and
equivalence are defined exactly as in propositional logic.

Semantics

I Interpretation for a set of variables X is a mapping I from X to
the set of values such that for all x ∈ X we have I(x) ∈ dom(x).

I Extend interpretations to mappings from formulas to boolean
values.

1. I(x = v) = 1 if and only if I(x) = v .
2. If A is not atomic, then as for propositional formulas.

I The definitions of truth, models, validity, satisfiability, and
equivalence are defined exactly as in propositional logic.

Semantics

I Interpretation for a set of variables X is a mapping I from X to
the set of values such that for all x ∈ X we have I(x) ∈ dom(x).

I Extend interpretations to mappings from formulas to boolean
values.

1. I(x = v) = 1 if and only if I(x) = v .
2. If A is not atomic, then as for propositional formulas.

I The definitions of truth, models, validity, satisfiability, and
equivalence are defined exactly as in propositional logic.

Example

Let a variable x range over the domain {a,b, c}, that is
dom(x) = {a,b, c}. Then the following formula is valid:

¬x = a → x = b ∨ x = c.

But if dom(x) = {a,b, c,d}, then this formula is not valid. Indeed,

{x 7→ d} 6|= ¬x = a → x = b ∨ x = c.

Example

Let a variable x range over the domain {a,b, c}, that is
dom(x) = {a,b, c}. Then the following formula is valid:

¬x = a → x = b ∨ x = c.

But if dom(x) = {a,b, c,d}, then this formula is not valid. Indeed,

{x 7→ d} 6|= ¬x = a → x = b ∨ x = c.

Propositional Logic as PLFD

The domain for each variable is {0,1}. Instead of atoms p use p = 1.

One can also use p = 0 for ¬p, since p = 0 is equivalent to ¬(p = 1).

This transformation preserves models. For example, models of

p ∧ q → ¬r

are exactly the models of

p = 1 ∧ q = 1 → r = 0.

Propositional Logic as PLFD

The domain for each variable is {0,1}. Instead of atoms p use p = 1.

One can also use p = 0 for ¬p, since p = 0 is equivalent to ¬(p = 1).

This transformation preserves models. For example, models of

p ∧ q → ¬r

are exactly the models of

p = 1 ∧ q = 1 → r = 0.

Propositional variables in PLFD

We say that p is a boolean variable if dom(p) = {0,1}.

When we have an instance of PLFD where both boolean and
non-boolean variables are used, we will use boolean variables as in
propositional logic:

I p instead of p = 1;
I ¬p instead of p = 0.

Translation of PLFD into Propositional Logic

I Introduce a propositional variable xv for each variable x and
value v ∈ dom(x).

I Replace every atom x = v by xv ;
I Add domain axiom for each variable x :

(xv1 ∨ . . . ∨ xvn) ∧
∧
i<j

(¬xvi ∨ ¬xvj),

where dom(x) = {v1, . . . , vn}.

Example

Let x range over the domain {a,b, c}. To check satisfiability of the
following formula

¬(x = b ∨ x = c).

we have to check satisfiability of the set of formulas

(xa ∨ xb ∨ xc) ∧ (¬xa ∨ ¬xb) ∧ (¬xa ∨ ¬xc) ∧ (¬xb ∨ ¬xc)∧
¬(xb ∨ xc).

Preservation of models

Suppose that I is a propositional model of all the domain axioms.
Define a PLFD interpretation I′ as follows:

I′(x) = v def
= I |= xv .

Theorem
Let F ′ be a PLFD formula and F be obtained by translating F ′ to
propositional logic. If I |= F, then I′ |= F ′.

Real-life modelling

Formalisation of numerous arguments used in 2003

The arguments used the following propositional variables.
1. can start war: one can start a war against Iraq;
2. is guilty: Iraq is guilty;
3. has WMD: Iraq has weapons of mass destruction.

Formalisation in propositional logic

If Iraq has weapons of mass
destruction, then it is guilty. has WMD → is guilty

If Iraq has no weapons of
mass destruction, we can-
not start a war.

¬has WMD → ¬can start war

We want to check whether,
under the above assump-
tions, it is possible that a
war started against a coun-
try that is not guilty.

can start war

¬is guilty

This set of formulas is unsatisfiable

Formalisation in propositional logic

If Iraq has weapons of mass
destruction, then it is guilty. has WMD → is guilty

If Iraq has no weapons of
mass destruction, we can-
not start a war.

¬has WMD → ¬can start war

We want to check whether,
under the above assump-
tions, it is possible that a
war started against a coun-
try that is not guilty.

can start war

¬is guilty

This set of formulas is unsatisfiable

Formalisation in propositional logic

If Iraq has weapons of mass
destruction, then it is guilty. has WMD → is guilty

If Iraq has no weapons of
mass destruction, we can-
not start a war.

¬has WMD → ¬can start war

We want to check whether,
under the above assump-
tions, it is possible that a
war started against a coun-
try that is not guilty.

can start war

¬is guilty

This set of formulas is unsatisfiable

Formalisation in propositional logic

If Iraq has weapons of mass
destruction, then it is guilty. has WMD → is guilty

If Iraq has no weapons of
mass destruction, we can-
not start a war.

¬has WMD → ¬can start war

We want to check whether,
under the above assump-
tions, it is possible that a
war started against a coun-
try that is not guilty.

can start war

¬is guilty

This set of formulas is unsatisfiable

Add a third value to a variable

At the UN, Colin Powell holds a model vial of anthrax, while arguing
that Iraq is likely to possess WMDs (5 February 2003)

Now let us consider a slightly different situation, when the domain of
the variable has WMD consists of the values yes, no, and a third
value, for example, suspected .

Add a third value to a variable

At the UN, Colin Powell holds a model vial of anthrax, while arguing
that Iraq is likely to possess WMDs (5 February 2003)

Now let us consider a slightly different situation, when the domain of
the variable has WMD consists of the values yes, no, and a third
value, for example, suspected .

Formalisation in propositional logic of finite domains

If Iraq has weapons of mass
destruction, then it is guilty. has WMD = yes → is guilty

If Iraq has no weapons of
mass destruction, we can-
not start a war.

has WMD = no →
¬can start war

We want to check whether,
under the above assump-
tions, it is possible that a
war started against a coun-
try that is not guilty.

can start war

¬is guilty

Formalisation in propositional logic of finite domains

If Iraq has weapons of mass
destruction, then it is guilty. has WMD = yes → is guilty

If Iraq has no weapons of
mass destruction, we can-
not start a war.

has WMD = no →
¬can start war

We want to check whether,
under the above assump-
tions, it is possible that a
war started against a coun-
try that is not guilty.

can start war

¬is guilty

Formalisation in propositional logic of finite domains

If Iraq has weapons of mass
destruction, then it is guilty. has WMD = yes → is guilty

If Iraq has no weapons of
mass destruction, we can-
not start a war.

has WMD = no →
¬can start war

We want to check whether,
under the above assump-
tions, it is possible that a
war started against a coun-
try that is not guilty.

can start war

¬is guilty

Translation to Propositional Logic

has WMDyes → is guilty
has WMDno → ¬can start war
can start war
¬is guilty
has WMDyes ∨ has WMDno

∨has WMDsuspected

¬has WMDyes ∨ ¬has WMDno

¬has WMDyes ∨ ¬has WMDsuspected

¬has WMDno ∨ ¬has WMDsuspected

This set is satisfiable. Satisfiability can
be established by unit propagation.

Translating the propositional model to a
model of the original problem gives

{can start war 7→ 1,

{is guilty 7→ 0,

{has WMD 7→ suspected}

Translation to Propositional Logic

has WMDyes → is guilty
has WMDno → ¬can start war
can start war
¬is guilty
has WMDyes ∨ has WMDno

∨has WMDsuspected

¬has WMDyes ∨ ¬has WMDno

¬has WMDyes ∨ ¬has WMDsuspected

¬has WMDno ∨ ¬has WMDsuspected

This set is satisfiable. Satisfiability can
be established by unit propagation.

Translating the propositional model to a
model of the original problem gives

{can start war 7→ 1,

{is guilty 7→ 0,

{has WMD 7→ suspected}

Translation to Propositional Logic

has WMDyes → is guilty
has WMDno → ¬can start war
can start war
¬is guilty
has WMDyes ∨ has WMDno

∨has WMDsuspected

¬has WMDyes ∨ ¬has WMDno

¬has WMDyes ∨ ¬has WMDsuspected

¬has WMDno ∨ ¬has WMDsuspected

This set is satisfiable. Satisfiability can
be established by unit propagation.

Translating the propositional model to a
model of the original problem gives

{can start war 7→ 1,

{is guilty 7→ 0,

{has WMD 7→ suspected}

Translation to Propositional Logic

has WMDyes → is guilty
has WMDno → ¬can start war
can start war
¬is guilty
has WMDyes ∨ has WMDno

∨has WMDsuspected

¬has WMDyes ∨ ¬has WMDno

¬has WMDyes ∨ ¬has WMDsuspected

¬has WMDno ∨ ¬has WMDsuspected

This set is satisfiable. Satisfiability can
be established by unit propagation.

Translating the propositional model to a
model of the original problem gives

{can start war 7→ 1,

{is guilty 7→ 0,

{has WMD 7→ suspected}

Translation to Propositional Logic

{can start war 7→ 1,

{is guilty 7→ 0,

{has WMD 7→ suspected}

	Propositional Logic of Finite Domains
	Logic and Modelling
	State-changing systems
	PLFD
	PLFD and propositional logic

