Outline

Quantified Boolean Formulas

Syntax and Semantics
Free and Bound Variables
Satisfiability Checking
CNF
DPLL
Quantified Boolean Formulas and OBDDs

Two-Player Games

Who is this man?

Two-Player Games

Does Garry Kasparov have a winning strategy?

Two-Player Games

Given a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$.

Two-Player Games

Given a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$. There are two players: P and Q.

Two-Player Games

Given a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$. There are two players: P and Q. At step k each player makes a move:

Two-Player Games

Given a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$. There are two players: P and Q. At step k each player makes a move:

1. the player P can choose a boolean value for the variable p_{k};

Two-Player Games

Given a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$. There are two players: P and Q. At step k each player makes a move:

1. the player P can choose a boolean value for the variable p_{k};
2. the player Q can choose a boolean value for the variable q_{k}.

Two-Player Games

Given a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$. There are two players: P and Q. At step k each player makes a move:

1. the player P can choose a boolean value for the variable p_{k};
2. the player Q can choose a boolean value for the variable q_{k}. The player P wins if after n steps the chosen values make the formula G true.

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases

1. p_{1}

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases

1. p_{1}
2. $p_{1} \rightarrow q_{1}$

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases

1. p_{1}
2. $p_{1} \rightarrow q_{1}$
3. $q_{1} \rightarrow q_{1}$

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases

1. p_{1}
2. $p_{1} \rightarrow q_{1}$
3. $q_{1} \rightarrow q_{1}$ If G is valid, P always wins!

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases

1. p_{1}
2. $p_{1} \rightarrow q_{1}$
3. $q_{1} \rightarrow q_{1}$ If G is valid, P always wins!
4. $p_{1} \wedge \neg p_{1}$

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases

1. p_{1}
2. $p_{1} \rightarrow q_{1}$
3. $q_{1} \rightarrow q_{1}$ If G is valid, P always wins!
4. $p_{1} \wedge \neg p_{1}$ If G is unsatisfiable, Q always wins!

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases

1. p_{1}
2. $p_{1} \rightarrow q_{1}$
3. $q_{1} \rightarrow q_{1}$ If G is valid, P always wins!
4. $p_{1} \wedge \neg p_{1}$ If G is unsatisfiable, Q always wins!
5. $p_{1} \leftrightarrow q_{1}$

Winning Strategy

Problem: does P have a winning strategy?

Winning Strategy

Problem: does P have a winning strategy?
He has a winning strategy if

- there exists a move for P (a boolean value for for p_{1}) such that

Winning Strategy

Problem: does P have a winning strategy? He has a winning strategy if

- there exists a move for P (a boolean value for for p_{1}) such that
- for all moves of Q (boolean values for for q_{1})

Winning Strategy

Problem: does P have a winning strategy? He has a winning strategy if

- there exists a move for P (a boolean value for for p_{1}) such that
- for all moves of Q (boolean values for for q_{1})
- there exists a move for P (a boolean value for for p_{2}) such that

Winning Strategy

Problem: does P have a winning strategy? He has a winning strategy if

- there exists a move for P (a boolean value for for p_{1}) such that
- for all moves of Q (boolean values for for q_{1})
- there exists a move for P (a boolean value for for p_{2}) such that
- for all moves of Q (boolean values for for q_{2})

Winning Strategy

Problem: does P have a winning strategy? He has a winning strategy if

- there exists a move for P (a boolean value for for p_{1}) such that
- for all moves of Q (boolean values for for q_{1})
- there exists a move for P (a boolean value for for p_{2}) such that
- for all moves of Q (boolean values for for q_{2})
- ...
- for all moves of Q (boolean values for for q_{n}) the formula G becomes true.

Winning Strategy

Problem: does P have a winning strategy? He has a winning strategy if

- there exists a move for P (a boolean value for for p_{1}) such that
- for all moves of Q (boolean values for for q_{1})
- there exists a move for P (a boolean value for for p_{2}) such that
- for all moves of Q (boolean values for for q_{2})
- ...
- for all moves of Q (boolean values for for q_{n}) the formula G becomes true.
The existence of a winning strategy can be expressed by a quantified boolean formula $\exists p_{1} \forall q_{1} \exists p_{2} \forall q_{2} \ldots \exists p_{n} \forall q_{n} G$.

Quantified Boolean Formulas

Propositional formula:

- Every boolean variable is a formula.
- T and \perp are formulas.
- If F_{1}, \ldots, F_{n} are formulas, where $n \geq 2$, then $\left(F_{1} \wedge \ldots \wedge F_{n}\right)$ and $\left(F_{1} \vee \ldots \vee F_{n}\right)$ are formulas.
- If F is a formula, then $\neg F$ is a formula.
- If F and G are formulas, then $(F \rightarrow G)$ and $(F \leftrightarrow G)$ are formulas.

Quantified Boolean Formulas

Propositional formula:

- Every boolean variable is a formula.
- \top and \perp are formulas.
- If F_{1}, \ldots, F_{n} are formulas, where $n \geq 2$, then $\left(F_{1} \wedge \ldots \wedge F_{n}\right)$ and $\left(F_{1} \vee \ldots \vee F_{n}\right)$ are formulas.
- If F is a formula, then $\neg F$ is a formula.
- If F and G are formulas, then $(F \rightarrow G)$ and $(F \leftrightarrow G)$ are formulas.
Quantified boolean formulas:
- If p is a boolean variable and F is a formula, then $\forall p F$ and $\exists p F$ are formulas.

Quantifiers

- \forall is called the universal quantifier.
- \exists is called the existential quantifier.
- Read $\forall p F$ as "for all p, F ".
- Read $\exists p F$ as "there exists p such that F " or "for some p, F ".

New Notation

Define

$$
I_{p}^{b}(q) \stackrel{\text { def }}{=} \begin{cases}I(q), & \text { if } p \neq q ; \\ b, & \text { if } p=q .\end{cases}
$$

Example: let $I=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$. Then

$$
\begin{aligned}
& I_{q}^{1}=\{p \mapsto 1, q \mapsto 1, r \mapsto 1\} \\
& I_{q}^{0}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}=I \\
& I_{p}^{0}=\{p \mapsto 0, q \mapsto 0, r \mapsto 1\}
\end{aligned}
$$

Semantics

1. $I(\top)=1$ and $I(\perp)=0$.
2. $I\left(F_{1} \wedge \ldots \wedge F_{n}\right)=1$ if and only if $I\left(F_{i}\right)=1$ for all i.
3. $I\left(F_{1} \vee \ldots \vee F_{n}\right)=1$ if and only if $I\left(F_{i}\right)=1$ for some i.
4. $I(\neg F)=1$ if and only if $I(F)=0$.
5. $I(F \rightarrow G)=1$ if and only if $I(F)=0$ or $I(G)=1$.
6. $I(F \leftrightarrow G)=1$ if and only if $I(F)=I(G)$.

Semantics

1. $I(\top)=1$ and $I(\perp)=0$.
2. $I\left(F_{1} \wedge \ldots \wedge F_{n}\right)=1$ if and only if $I\left(F_{i}\right)=1$ for all i.
3. $I\left(F_{1} \vee \ldots \vee F_{n}\right)=1$ if and only if $I\left(F_{i}\right)=1$ for some i.
4. $I(\neg F)=1$ if and only if $I(F)=0$.
5. $I(F \rightarrow G)=1$ if and only if $I(F)=0$ or $I(G)=1$.
6. $I(F \leftrightarrow G)=1$ if and only if $I(F)=I(G)$.
7. $I(\forall p F)=1$ if and only if $I_{p}^{0}(F)=1$ and $I_{p}^{1}(F)=1$.
8. $I(\exists p F)=1$ if and only if $I_{p}^{0}(F)=1$ or $I_{p}^{1}(F)=1$.

Evaluating a Formula: and-or trees

Let us evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$.

Evaluating a Formula: and-or trees

Let us evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$. Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $I_{b_{1} b_{2}}$.

$$
I_{10} \models \forall p \exists q(p \leftrightarrow q)
$$

Evaluating a Formula: and-or trees

Let us evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$. Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $I_{b_{1} b_{2}}$.

$$
I_{10} \models \forall p \exists q(p \leftrightarrow q) \quad \Leftrightarrow \quad \begin{aligned}
& I_{00} \models \exists q(p \leftrightarrow q) \\
& I_{10} \models \exists q(p \leftrightarrow q)
\end{aligned} \text { and }
$$

Evaluating a Formula: and-or trees

Let us evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$. Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $I_{b_{1} b_{2}}$.

$$
\begin{aligned}
& I_{10} \models \forall p \exists q(p \leftrightarrow q) \Leftrightarrow\left[\begin{array}{l}
I_{00} \models \exists q(p \leftrightarrow q) \\
I_{10} \models \exists q(p \leftrightarrow q)
\end{array}\right] \\
&\left.\Leftrightarrow \quad \begin{array}{l}
I_{00} \models p \leftrightarrow q \\
I_{01} \models p \leftrightarrow q
\end{array}\right] \\
&
\end{aligned}
$$

Evaluating a Formula: and-or trees

Let us evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$. Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $I_{b_{1} b_{2}}$.

$$
\begin{aligned}
& I_{10} \models \forall p \exists q(p \leftrightarrow q) \Leftrightarrow \begin{array}{l}
I_{00} \models \exists q(p \leftrightarrow q) \\
I_{10} \models \exists q(p \leftrightarrow q)
\end{array} \text { and } \\
& \Leftrightarrow \begin{array}{|l}
I_{00} \models p \leftrightarrow q \\
I_{01} \models p \leftrightarrow q
\end{array} \text { or } \\
& \begin{array}{l}
I_{10}=p \leftrightarrow q \\
I_{11} \models p \leftrightarrow q
\end{array} \text { or }
\end{aligned}
$$

Evaluating a formula

Evaluating a formula

Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $I_{b_{1} b_{2}}$. Use wildcards * to denote "any" boolean value.

$$
I_{* *} \models \forall p \exists q(p \leftrightarrow q)
$$

Evaluating a formula

Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $l_{b_{1} b_{2}}$. Use wildcards * to denote "any" boolean value.

$$
I_{* *} \models \forall p \exists q(p \leftrightarrow q) \quad \Leftrightarrow \quad \begin{aligned}
& I_{0 *} \models \exists q(p \leftrightarrow q) \\
& I_{1 *} \models \exists q(p \leftrightarrow q)
\end{aligned} \text { and }
$$

Evaluating a formula

Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $I_{b_{1} b_{2}}$. Use wildcards * to denote "any" boolean value.

$$
I_{* *} \models \forall p \exists q(p \leftrightarrow q) \quad \Leftrightarrow \quad \begin{aligned}
& I_{0 *}=\exists q(p \leftrightarrow q) \\
& I_{1 *} \models \exists q(p \leftrightarrow q)
\end{aligned} \text { and }
$$

$$
\Leftrightarrow \quad \begin{aligned}
& \begin{array}{l}
I_{00} \models p \leftrightarrow q \\
I_{01} \models p \leftrightarrow q
\end{array} \text { or } \\
& \\
& \begin{array}{l}
I_{10} \models p \leftrightarrow q \\
I_{11} \models p \leftrightarrow q
\end{array} \text { or } \\
&
\end{aligned} \text { and }
$$

Evaluating a formula

Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $I_{b_{1} b_{2}}$. Use wildcards * to denote "any" boolean value.

$$
I_{* *} \models \forall p \exists q(p \leftrightarrow q) \quad \Leftrightarrow \quad \begin{aligned}
& I_{0 *}=\exists q(p \leftrightarrow q) \\
& I_{1 *} \models \exists q(p \leftrightarrow q)
\end{aligned} \text { and }
$$

$$
\Leftrightarrow \quad \begin{aligned}
& \begin{array}{l}
I_{00} \models p \leftrightarrow q \\
I_{01} \models p \leftrightarrow q
\end{array} \\
& \\
& \begin{array}{l}
I_{10} \models p \leftrightarrow q \\
I_{11} \models p \leftrightarrow q
\end{array} \\
& \text { or } \\
&
\end{aligned} \text { and }
$$

The variables p and q are bound by quantifiers $\forall p$ and $\exists q$, so the value of the formula does not depend on these variables.

Subformula

Propositional formulas:

- The formulas F_{1}, \ldots, F_{n} are the immediate subformulas of the formulas $F_{1} \wedge \ldots \wedge F_{n}$ and $F_{1} \vee \ldots \vee F_{n}$.
- The formulas F is the immediate subformula of the formula $\neg F$.
- The formulas F_{1}, F_{2} are the immediate subformulas of the formulas $F_{1} \rightarrow F_{2}$ and $F_{1} \leftrightarrow F_{2}$.
- ...

Subformula

Propositional formulas:

- The formulas F_{1}, \ldots, F_{n} are the immediate subformulas of the formulas $F_{1} \wedge \ldots \wedge F_{n}$ and $F_{1} \vee \ldots \vee F_{n}$.
- The formulas F is the immediate subformula of the formula $\neg F$.
- The formulas F_{1}, F_{2} are the immediate subformulas of the formulas $F_{1} \rightarrow F_{2}$ and $F_{1} \leftrightarrow F_{2}$.
- ...

Quantified boolean formulas:

- The formula F_{1} is the immediate subformula of the formulas $\forall p F_{1}$ and $\exists p F_{1}$.

Positions and Polarity

Let $\left.F\right|_{\pi}=G$.
Propositional formulas:

- If G has the form $G_{1} \wedge \ldots \wedge G_{n}$ or $G_{1} \vee \ldots \vee G_{n}$, then for all $i \in\{1, \ldots, n\}$ the position $\pi . i$ is a position in F and $\operatorname{pol}(F, \pi . i) \stackrel{\text { def }}{=} \operatorname{pol}(F, \pi)$.
- If G has the form $\neg G_{1}$, then $\pi .1$ is a position in $F,\left.F\right|_{\pi .1} \stackrel{\text { def }}{=} G_{1}$ and $\operatorname{pol}(F, \pi .1) \stackrel{\text { def }}{=}-\operatorname{pol}(F, \pi)$.

Positions and Polarity

Let $\left.F\right|_{\pi}=G$.
Propositional formulas:

- If G has the form $G_{1} \wedge \ldots \wedge G_{n}$ or $G_{1} \vee \ldots \vee G_{n}$, then for all $i \in\{1, \ldots, n\}$ the position $\pi . i$ is a position in F and $\operatorname{pol}(F, \pi . i) \stackrel{\text { def }}{=} \operatorname{pol}(F, \pi)$.
- If G has the form $\neg G_{1}$, then $\pi .1$ is a position in $F,\left.F\right|_{\pi .1} \stackrel{\text { def }}{=} G_{1}$ and $\operatorname{pol}(F, \pi .1) \stackrel{\text { def }}{=}-\operatorname{pol}(F, \pi)$.

Quantified boolean formulas:

- If G has the form $\forall p G_{1}$ or $\exists p G_{1}$, then $\pi .1$ is a position in F, $\left.F\right|_{\pi .1} \stackrel{\text { def }}{=} G_{1}$ and $p o l(F, \pi .1) \stackrel{\text { def }}{=} p o l(F, \pi)$.

Example

Example

Example

Free and bound occurrences of variables

Let p be a boolean variable and $\left.F\right|_{\pi}=p$.

- The occurrence of p at the position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$ for some G.

Free and bound occurrences of variables

Let p be a boolean variable and $\left.F\right|_{\pi}=p$.

- The occurrence of p at the position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$ for some G. In other words, a bound occurrence of p is an occurrence in the scope of $\forall p$ or $\exists p$.

Free and bound occurrences of variables

Let p be a boolean variable and $\left.F\right|_{\pi}=p$.

- The occurrence of p at the position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$ for some G. In other words, a bound occurrence of p is an occurrence in the scope of $\forall p$ or $\exists p$.
- Free occurrence: not bound.

Free and bound occurrences of variables

Let p be a boolean variable and $\left.F\right|_{\pi}=p$.

- The occurrence of p at the position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$ for some G. In other words, a bound occurrence of p is an occurrence in the scope of $\forall p$ or $\exists p$.
- Free occurrence: not bound.
- Free (bound) variable of a formula: a variable with at least one free (bound) occurrence.

Free and bound occurrences of variables

Let p be a boolean variable and $\left.F\right|_{\pi}=p$.

- The occurrence of p at the position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$ for some G. In other words, a bound occurrence of p is an occurrence in the scope of $\forall p$ or $\exists p$.
- Free occurrence: not bound.
- Free (bound) variable of a formula: a variable with at least one free (bound) occurrence.
- Closed formula: formula with no free variables.

Example: Free and Bound Variables

Only Free Variables Matter

The truth value of a formula depends only on the truth values of free variables of the formula:
Lemma
Let for all free variables p of a formula F we have $I_{1}(p)=I_{2}(p)$. Then $I_{1} \models F$ if and only if $I_{2} \models F$.

Only Free Variables Matter

The truth value of a formula depends only on the truth values of free variables of the formula:
Lemma
Let for all free variables p of a formula F we have $I_{1}(p)=I_{2}(p)$. Then $I_{1} \models F$ if and only if $I_{2}=F$.

Theorem
Let F be a closed formula and I_{1}, I_{2} be interpretations. Then $I_{1} \models F$ if and only if $I_{2} \models F$.

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas.

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas.
There is no difference between these notions for closed formulas:
Lemma
For every interpretation I and closed formula F the following propositions are equivalent: (i) $I \models F$; (ii) F is satisfiable; and (iii) F is valid.

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas.
There is no difference between these notions for closed formulas:
Lemma
For every interpretation I and closed formula F the following propositions are equivalent: (i) $I \models F$; (ii) F is satisfiable; and (iii) F is valid.

Validity and satisfiability can be expressed through truth:
Lemma
Let F be a formula with free variables p_{1}, \ldots, p_{n}.

- F is satisfiable if and only if the formula $\exists p_{1} \ldots \exists p_{n} F$ is satisfiable (true, valid).
- F is valid if and only if the formula $\forall p_{1} \ldots \forall p_{n} F$ is valid (true, satisfiable).

More on free and bound occurrences

```
int symdiff(int i,int j)
    return i > j ? i - j : j - i;
sum = i + symdiff(3,4);
```


More on free and bound occurrences

$$
\begin{aligned}
& \text { binding } \\
& \operatorname{sum}={\underset{\text { free }}{ }+\operatorname{symdiff}(3,4) ; ~}_{\text {fren }}
\end{aligned}
$$

More on free and bound occurrences

```
{nt symdiff(int i,int j)
    return i > j ? i - j : j - i;
sum = i + symdiff(3,4);
```

Renaming bound variables does not change the semantics of the program:

```
int symdiff(int k,int j)
    return k > j ? k - j : j - k;
sum = i + symdiff(3,4);
```


Substitutions for propositional formulas

Substitution: $(F)_{p}^{G}$: denotes the formula obtained from F by replacing all occurrences of the variable p by G.

Substitutions for propositional formulas

Substitution: $(F)_{p}^{G}$: denotes the formula obtained from F by replacing all occurrences of the variable p by G.

Example:

$$
\begin{aligned}
& ((p \vee s) \wedge(q \rightarrow p))_{p}^{(/ \wedge s)}= \\
& (((I \wedge s) \vee s) \wedge(q \rightarrow(I \wedge s)))
\end{aligned}
$$

Substitutions for propositional formulas

Substitution: $(F)_{p}^{G}$: denotes the formula obtained from F by replacing all occurrences of the variable p by G.

Example:

$$
\begin{aligned}
& ((p \vee s) \wedge(q \rightarrow p))_{p}^{(I \wedge s)}= \\
& (((I \wedge s) \vee s) \wedge(q \rightarrow(I \wedge s)))
\end{aligned}
$$

Properties: If we apply any substitution to a valid formula then we also obtain a valid formula.

Substitution for quantified formulas

Some problems...

Substitution for quantified formulas

Some problems...
Consider $\exists q(\neg p \leftrightarrow q)$.

Substitution for quantified formulas

Some problems...
Consider $\exists q(\neg p \leftrightarrow q)$.
We cannot simply replace variables by formulas any more:
$\exists(r \rightarrow r)(\neg p \leftrightarrow r \rightarrow r)$???

Substitution for quantified formulas

Some problems...
Consider $\exists q(\neg p \leftrightarrow q)$.
We cannot simply replace variables by formulas any more:
$\exists(r \rightarrow r)(\neg p \leftrightarrow r \rightarrow r)$???
Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a formula, e.g. $(\forall p p \rightarrow q) \wedge(q \vee(q \rightarrow p))$

Renaming bound variables

Notation: $\exists \forall$: any of \exists, \forall and x : any of \wedge, \vee.

Renaming bound variables

Notation: $\exists \forall$: any of \exists, \forall and x : any of \wedge, \vee.
Renaming bound variables in F :
Let $F[\exists \forall p G]$.

1. Take a fresh variable q (that is a variable not occurring in F);
2. Replace all free occurrences of p in G (note: not in F !) by q obtaining G^{\prime}.
3. So we obtain the $F\left[\exists \forall q G^{\prime}\right]$ as the result.

Renaming bound variables

Notation: \exists : any of \exists, \forall and x : any of \wedge, \vee.
Renaming bound variables in F :
Let $F[\exists \forall p G]$.

1. Take a fresh variable q (that is a variable not occurring in F);
2. Replace all free occurrences of p in G (note: not in $F!$) by q obtaining G^{\prime}.
3. So we obtain the $F\left[\exists \forall q G^{\prime}\right]$ as the result.

Lemma
$F[\exists p G] \equiv F\left[\exists \forall q G^{\prime}\right]$

Renaming bound variables

Notation: $\exists \forall$: any of \exists, \forall and x : any of \wedge, \vee.
Renaming bound variables in F :
Let $F[\exists \forall p G]$.

1. Take a fresh variable q (that is a variable not occurring in F);
2. Replace all free occurrences of p in G (note: not in F !) by q obtaining G^{\prime}.
3. So we obtain the $F\left[\exists \forall q G^{\prime}\right]$ as the result.

Lemma
$F[\exists \forall p G] \equiv F\left[\exists \forall q G^{\prime}\right]$
Example:
$\exists q(\forall p((p \rightarrow q) \wedge p)) \vee p$.
Then we can rename p into r obtaining
$\exists q(\forall r((r \rightarrow q) \wedge r)) \vee p$.

Rectified formulas

Rectified formula F:

- no variable appears both free and bound in F;
- for every variable p, the formula F contains at most one occurrence of quantifiers $\exists \forall p$.

Rectified formulas

Rectified formula F:

- no variable appears both free and bound in F;
- for every variable p, the formula F contains at most one occurrence of quantifiers $\exists \forall p$.

Any formula can be transformed into a rectified formula by renaming bound variables.

Rectified formulas

Rectified formula F :

- no variable appears both free and bound in F;
- for every variable p, the formula F contains at most one occurrence of quantifiers $\exists \forall p$.

Any formula can be transformed into a rectified formula by renaming bound variables.

We can use the usual notation $(F)_{p}^{G}$ for rectified formulas assuming that p occurs only free.

Rectification: Example

$$
p \rightarrow \exists p(p \wedge \forall p(p \vee r \rightarrow \neg p))
$$

Rectification: Example

$$
\begin{aligned}
& p \rightarrow \exists p(p \wedge \forall p(p \vee r \rightarrow \neg p)) \Rightarrow \\
& p \rightarrow \exists p\left(p \wedge \forall p_{1}\left(p_{1} \vee r \rightarrow \neg p_{1}\right)\right)
\end{aligned}
$$

Rectification: Example

$$
\begin{aligned}
p & \rightarrow \exists p(p \wedge \forall p(p \vee r \rightarrow \neg p)) \Rightarrow \\
p & \rightarrow \exists p\left(p \wedge \forall p_{1}\left(p_{1} \vee r \rightarrow \neg p_{1}\right)\right) \Rightarrow \\
p & \rightarrow \exists p_{2}\left(p_{2} \wedge \forall p_{1}\left(p_{1} \vee r \rightarrow \neg p_{1}\right)\right)
\end{aligned}
$$

This formula is rectified and equivalent to the original one.

Another problem

$\exists q(\neg p \leftrightarrow q)$: there exists a truth value equal to the value of $\neg p$. This formula is valid.

Rename p into q.

Another problem

$\exists q(\neg p \leftrightarrow q)$: there exists a truth value equal to the value of $\neg p$. This formula is valid.

Rename p into q.
$\exists q(\neg q \leftrightarrow q)$: there exists a truth value equivalent to its own negation. This formula is unsatisfiable.

Another restriction

Suppose we want to substitute $(F)_{p}^{G}$.
Then we require: no free variable in G become bound in $(F)_{p}^{G}$.

Another restriction

Suppose we want to substitute $(F)_{p}^{G}$.
Then we require: no free variable in G become bound in $(F)_{p}^{G}$.
In previous example $\exists q(\neg p \leftrightarrow q)$:
Substitute p by q. $(\exists q(\neg q \leftrightarrow q)$ does not satisfy above)

Another restriction

Suppose we want to substitute $(F)_{p}^{G}$.
Then we require: no free variable in G become bound in $(F)_{p}^{G}$.
In previous example $\exists q(\neg p \leftrightarrow q)$:
Substitute p by q. $(\exists q(\neg q \leftrightarrow q)$ does not satisfy above)
Uniform solution - renaming of bound variables
$\exists q(\neg p \leftrightarrow q) \equiv \exists r(\neg p \leftrightarrow r)$
Now we can substitute p by q obtaining $\exists r(\neg q \leftrightarrow r)$

Another restriction

Suppose we want to substitute $(F)_{p}^{G}$.
Then we require: no free variable in G become bound in $(F)_{p}^{G}$.
In previous example $\exists q(\neg p \leftrightarrow q)$:
Substitute p by q. $(\exists q(\neg q \leftrightarrow q)$ does not satisfy above)
Uniform solution - renaming of bound variables
$\exists q(\neg p \leftrightarrow q) \equiv \exists r(\neg p \leftrightarrow r)$
Now we can substitute p by q obtaining $\exists r(\neg q \leftrightarrow r)$
From now on we always assume that:

- formulas are rectified.
- all substitutions satisfy the requirement above

Equivalent replacement

Lemma
Let I be an interpretation and $I \vDash F_{1} \leftrightarrow F_{2}$. Then $I \models G\left[F_{1}\right] \leftrightarrow G\left[F_{2}\right]$.
Theorem (Equivalent Replacement)
Let $F_{1} \equiv F_{2}$. Then $G\left[F_{1}\right] \equiv G\left[F_{2}\right]$.

Prenex form

- Quantifier-free formula: no quantifiers (that is, propositional).

Prenex form

- Quantifier-free formula: no quantifiers (that is, propositional).
- Prenex formula has the form $\exists \forall_{1} p_{1} \ldots \exists \forall_{n} p_{n} G$, where G is quantifier-free.

Prenex form

- Quantifier-free formula: no quantifiers (that is, propositional).
- Prenex formula has the form $\exists \forall_{1} p_{1} \ldots \exists \forall_{n} p_{n} G$, where G is quantifier-free.
- Outermost prefix of $\exists \forall_{1} p_{1} \ldots \exists \forall_{n} p_{n}$: the longest subsequence $\exists \forall_{1} p_{1} \ldots \exists \exists_{k} p_{k}$ of $\exists \exists_{1} p_{1} \ldots \exists \exists_{n} p_{n}$ such that $\exists \forall_{1}=\ldots=\exists \forall_{k}$.

Prenex form

- Quantifier-free formula: no quantifiers (that is, propositional).
- Prenex formula has the form $\exists \forall_{1} p_{1} \ldots \exists \forall_{n} p_{n} G$, where G is quantifier-free.
- Outermost prefix of $\exists \forall_{1} p_{1} \ldots \exists \forall_{n} p_{n}$: the longest subsequence $\exists \forall_{1} p_{1} \ldots \exists \exists_{k} p_{k}$ of $\exists \forall_{1} p_{1} \ldots \exists \exists_{n} p_{n}$ such that $\exists \forall_{1}=\ldots=\exists \forall_{k}$.
- A formula F is a prenex form of a formula G if F is prenex and $F \equiv G$.

Prenexing rules

Prenexing rules:

$$
\begin{array}{cc}
\exists p p F_{1} \times \ldots \ldots \times F_{n} \Rightarrow \exists \forall p\left(F_{1} \times \ldots \times F_{n}\right) \\
\forall p F_{1} \rightarrow F_{2} \Rightarrow \exists p\left(F_{1} \rightarrow F_{2}\right) & \exists p F_{1} \rightarrow F_{2} \Rightarrow \forall p\left(F_{1} \rightarrow F_{2}\right) \\
F_{1} \rightarrow \forall p F_{2} \Rightarrow \forall p\left(F_{1} \rightarrow F_{2}\right) & F_{1} \rightarrow \exists p F_{2} \Rightarrow \exists p\left(F_{1} \rightarrow F_{2}\right) \\
\neg \forall p F \Rightarrow \exists p \neg F & \neg \exists p F \Rightarrow \forall p \neg F
\end{array}
$$

Prenexing. Example I

$$
\begin{aligned}
& \exists q(q \rightarrow p) \rightarrow \neg \forall r(r \rightarrow p) \vee p \Rightarrow \\
& \forall q((q \rightarrow p) \rightarrow \neg \forall r(r \rightarrow p) \vee p) \Rightarrow \\
& \forall q((q \rightarrow p) \rightarrow \exists r(r \rightarrow p) \vee p) \Rightarrow \\
& \forall q((q \rightarrow p) \rightarrow \exists r(\neg(r \rightarrow p) \vee p)) \Rightarrow \\
& \forall q \exists r((q \rightarrow p) \rightarrow \neg(r \rightarrow p) \vee p) .
\end{aligned}
$$

Prenexing. Example II

$$
\begin{aligned}
& \exists q(q \rightarrow p) \rightarrow \neg \forall r(r \rightarrow p) \vee p \Rightarrow \\
& \exists q(q \rightarrow p) \rightarrow \exists r \neg(r \rightarrow p) \vee p \Rightarrow \\
& \exists q(q \rightarrow p) \rightarrow \exists r(\neg(r \rightarrow p) \vee p) \Rightarrow \\
& \exists r(\exists q(q \rightarrow p) \rightarrow \neg(r \rightarrow p) \vee p) \Rightarrow \\
& \exists r \forall q((q \rightarrow p) \rightarrow \neg(r \rightarrow p) \vee p) .
\end{aligned}
$$

What's next

Algorithms for satisfiability, validity of QBF:

- Splitting
- DPLL

Reminder:
(i) $F\left(p_{1}, \ldots, p_{n}\right)$ is satisfiable iff $\exists p_{1} \ldots \exists p_{n} F\left(p_{1}, \ldots, p_{n}\right)$ is true/satisfiable.
(ii) $F\left(p_{1}, \ldots, p_{n}\right)$ is valid iff $\quad \forall p_{1} \ldots \forall p_{n} F\left(p_{1}, \ldots, p_{n}\right)$ is true/satisfiable.
Algorithms will check whether a closed formula is true or false.

Splitting: foundations

Lemma

- A closed formula $\forall p F$ is true if and only if the formulas F_{p}^{\perp} and F_{p}^{\top} are true.
- A closed formula $\exists p F$ is true if and only if at least one of the formulas F_{p}^{\perp} or F_{p}^{\top} is true.

Splitting

Simplification rules for T :

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
T \wedge F_{1} \wedge \ldots \wedge F_{n} \Rightarrow F_{1} \wedge \ldots \wedge F_{n} \\
\mathrm{~T} \mathrm{\vee} \vee F_{1} \vee \ldots \vee F_{n} \Rightarrow T \\
F \rightarrow T \Rightarrow T \Rightarrow T \Rightarrow F \Rightarrow F \\
F \leftrightarrow T \Rightarrow F \quad T \leftrightarrow F \Rightarrow F
\end{gathered}
$$

Simplification rules for \perp :

$$
\begin{gathered}
\neg \perp \Rightarrow \top \\
\perp \wedge F_{1} \wedge \ldots \wedge F_{n} \Rightarrow \perp \\
\perp \vee F_{1} \vee \ldots F_{n} \Rightarrow F_{1} \vee \ldots \vee F_{n} \\
F \rightarrow \perp \Rightarrow \neg F \quad \perp \rightarrow F \Rightarrow T \\
F \leftrightarrow \perp \Rightarrow \neg F \quad \perp \leftrightarrow F \Rightarrow \neg F
\end{gathered}
$$

Splitting

Simplification rules for T :

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge F_{1} \wedge \ldots \wedge F_{n} \Rightarrow F_{1} \wedge \ldots \wedge F_{n} \\
\top \vee F_{1} \vee \ldots \vee F_{n} \Rightarrow \top \\
F \rightarrow \top \Rightarrow \top \quad \top \rightarrow F \Rightarrow F \\
F \leftrightarrow T \Rightarrow F \\
\forall p \top \Rightarrow \top \\
\exists p \top \Rightarrow \top
\end{gathered}
$$

Simplification rules for \perp :

$$
\begin{gathered}
\neg \perp \Rightarrow \top \\
\perp \wedge F_{1} \wedge \ldots \wedge F_{n} \Rightarrow \perp \\
\perp \vee F_{1} \vee \ldots \vee F_{n} \Rightarrow F_{1} \vee \ldots \vee F_{n} \\
F \rightarrow \perp \Rightarrow \neg F \quad \perp \rightarrow F \Rightarrow \top \\
F \leftrightarrow \perp \Rightarrow \neg F \quad \perp \leftrightarrow F \Rightarrow \neg F \\
\forall p \perp \Rightarrow \perp \\
\exists p \perp \Rightarrow \perp
\end{gathered}
$$

Splitting algorithm

```
procedure splitting(F)
input: closed rectified prenex formula F
output: 0 or 1
parameters: function select_variable_value (selects a variable
                from the outermost prefix of F}\mathrm{ and a boolean value for it)
begin
    F := simplify (F)
    if F}=\perp\mathrm{ then return 0
    if F}=T\mathrm{ then return 1
    Let }F\mathrm{ have the form }\exists\forall\mp@subsup{p}{1}{}\ldots\ldots\not\exists\mp@subsup{p}{k}{}\mp@subsup{F}{1}{
    (p,b) := select_variable_value(F)
    Let F}\mp@subsup{F}{}{\prime}\mathrm{ be obtained from F by deleting }\exists>p\mathrm{ from its outermost prefix
    if b}=0\mathrm{ then (G}(\mp@subsup{G}{1}{},\mp@subsup{G}{2}{}):=(\perp,\top
            else}(\mp@subsup{G}{1}{},\mp@subsup{G}{2}{}):=(T,\perp
    case (splitting((\mp@subsup{F}{}{\prime}\mp@subsup{)}{p}{\mp@subsup{G}{1}{}}),\exists\forall)\mathrm{ of}
        (0,\forall) => return 0
        (0,\exists)=> return splitting((F')}\mp@subsup{p}{p}{\mp@subsup{G}{2}{}}
        (1,\forall) = return splitting((F
    (1,\exists)=> return 1
end
```


Splitting: examples

$$
\forall p \exists q(p \leftrightarrow q)
$$

Splitting: examples

$$
\begin{aligned}
& \forall p \exists q(p \leftrightarrow q) \\
& p=0 \\
& \exists q(\neg q)
\end{aligned}
$$

Splitting: examples

$$
\begin{aligned}
& \forall p \exists q(p \leftrightarrow q) \\
& p=0 \\
& \exists q(\neg q) \\
& q=0
\end{aligned}
$$

Splitting: examples

$$
\begin{aligned}
& \forall p \exists q(p \leftrightarrow q) \\
& p=0 / \wedge \\
& 1 \quad \exists q(\neg q) \\
& q=0
\end{aligned}
$$

Splitting: examples

$$
\exists q \forall p(p \leftrightarrow q)
$$

Splitting: examples

$$
\begin{aligned}
& \quad \exists q \forall p(p \leftrightarrow q) \\
& q=0 \\
& \forall p(\neg p)
\end{aligned}
$$

Splitting: examples

Note: selection of variable values is best understood as two-player games: by selecting a value for $\exists q$ one is trying to make the formula true, by selecting a value for $\forall p$ one is trying to make it false,

CNF

For more efficient algorithms we need formulas to be in a convenient normal form.

CNF

For more efficient algorithms we need formulas to be in a convenient normal form.

Our next aim is to modify CNF and DPLL to deal with quantified boolean formulas.

CNF

For more efficient algorithms we need formulas to be in a convenient normal form.

Our next aim is to modify CNF and DPLL to deal with quantified boolean formulas.

A quantified boolean formula F is in $C N F$, if it is either \perp, or T, or has the form $\exists \exists_{1} p_{1} \ldots \exists \forall_{n} p_{n}\left(C_{1} \wedge \ldots \wedge C_{m}\right)$, where C_{1}, \ldots, C_{m} are clauses.

CNF

For more efficient algorithms we need formulas to be in a convenient normal form.

Our next aim is to modify CNF and DPLL to deal with quantified boolean formulas.

A quantified boolean formula F is in $C N F$, if it is either \perp, or T, or has the form $\exists \exists_{1} p_{1} \ldots \exists \forall_{n} p_{n}\left(C_{1} \wedge \ldots \wedge C_{m}\right)$, where C_{1}, \ldots, C_{m} are clauses.

Example:

$$
\forall p \exists q \exists s((\neg p \vee s \vee q) \wedge(s \vee \neg q) \wedge \neg s))
$$

CNF rules

Prenexing rules + propositional CNF rules:

$$
\begin{aligned}
F \leftrightarrow G \Rightarrow & \Rightarrow \neg F \vee G) \wedge(\neg G \vee F), \\
F \rightarrow G & \Rightarrow \neg F \vee G, \\
\neg(F \wedge G) & \Rightarrow \neg F \vee \neg G, \\
\neg(F \vee G) & \Rightarrow \neg F \wedge \neg G, \\
\neg \neg F \Rightarrow F, & \Rightarrow F \\
\left(F_{1} \wedge \ldots \wedge F_{m}\right) \vee G_{1} \vee \ldots \vee G_{n} \Rightarrow & \left(F_{1} \vee G_{1} \vee \ldots \vee G_{n}\right) \\
& \left(F_{m} \vee G_{1} \vee \ldots \vee G_{n}\right) .
\end{aligned}
$$

Unit Propagation (DPLL)

Input of DPLL:

- Q: quantifier sequence $\exists \forall_{1} p_{1} \ldots \ldots \exists \exists_{n} p_{n}$
- S: a set of clauses

Unit Propagation (DPLL)

Input of DPLL:

- Q: quantifier sequence $\exists \forall_{1} p_{1} \ldots \ldots \exists \exists_{n} p_{n}$
- S: a set of clauses

Main simplification - unit propagation with respect to Q, S :
if S contains a unit clause, i.e. a clause consisting of one literal L of the form p or $\neg p$ then

Unit Propagation (DPLL)

Input of DPLL:

- Q: quantifier sequence $\exists \forall_{1} p_{1} \ldots \ldots \exists \exists_{n} p_{n}$
- S: a set of clauses

Main simplification - unit propagation with respect to Q, S :
if S contains a unit clause, i.e. a clause consisting of one literal L of the form p or $\neg p$ then

- if Q contains $\exists p$ or p does not occur in Q

1. remove from S every clause of the form $L \vee C^{\prime}$;
2. replace in S every clause of the form $\bar{L} \vee C^{\prime}$ by the clause C^{\prime}.

Unit Propagation (DPLL)

Input of DPLL:

- Q: quantifier sequence $\exists \forall_{1} p_{1} \ldots \ldots \exists \exists_{n} p_{n}$
- S: a set of clauses

Main simplification - unit propagation with respect to Q, S :
if S contains a unit clause, i.e. a clause consisting of one literal L of the form p or $\neg p$ then

- if Q contains $\exists p$ or p does not occur in Q

1. remove from S every clause of the form $L \vee C^{\prime}$;
2. replace in S every clause of the form $\bar{L} \vee C^{\prime}$ by the clause C^{\prime}.

- if Q contains $\forall p$, then replace S by the set $\{\square\}$;

Unit Propagation (DPLL)

Input of DPLL:

- Q: quantifier sequence $\exists \forall_{1} p_{1} \ldots \ldots \exists \exists_{n} p_{n}$
- S: a set of clauses

Main simplification - unit propagation with respect to Q, S :
if S contains a unit clause, i.e. a clause consisting of one literal L of the form p or $\neg p$ then

- if Q contains $\exists p$ or p does not occur in Q

1. remove from S every clause of the form $L \vee C^{\prime}$;
2. replace in S every clause of the form $\bar{L} \vee C^{\prime}$ by the clause C^{\prime}.

- if Q contains $\forall p$, then replace S by the set $\{\square\}$;

Why different for universal quantifiers? Use intuition from games!

Unit Propagation (DPLL)

Input of DPLL:

- Q: quantifier sequence $\exists \forall_{1} p_{1} \ldots \ldots \exists \exists_{n} p_{n}$
- S: a set of clauses

Main simplification - unit propagation with respect to Q, S :
if S contains a unit clause, i.e. a clause consisting of one literal L of the form p or $\neg p$ then

- if Q contains $\exists p$ or p does not occur in Q

1. remove from S every clause of the form $L \vee C^{\prime}$;
2. replace in S every clause of the form $\bar{L} \vee C^{\prime}$ by the clause C^{\prime}.

- if Q contains $\forall p$, then replace S by the set $\{\square\}$;

Why different for universal quantifiers? Use intuition from games!
The player playing \forall wants to make the formula false.

Unit Propagation (DPLL)

Input of DPLL:

- Q: quantifier sequence $\exists \forall_{1} p_{1} \ldots \ldots \exists \exists_{n} p_{n}$
- S: a set of clauses

Main simplification - unit propagation with respect to Q, S :
if S contains a unit clause, i.e. a clause consisting of one literal L of the form p or $\neg p$ then

- if Q contains $\exists p$ or p does not occur in Q

1. remove from S every clause of the form $L \vee C^{\prime}$;
2. replace in S every clause of the form $\bar{L} \vee C^{\prime}$ by the clause C^{\prime}.

- if Q contains $\forall p$, then replace S by the set $\{\square\}$;

Why different for universal quantifiers? Use intuition from games!
The player playing \forall wants to make the formula false. So, when it is his turn to make a move $\forall p$, he has a winning move: to select the value for p which makes the unit clause false (and hence the conjunction of clauses false too).

DPLL algorithm

```
procedure DPLL(Q,S)
input: quantifier sequence Q= \exists\mp@subsup{|}{1}{}\mp@subsup{p}{1}{}\ldots\exists\mp@subsup{|}{n}{}\mp@subsup{p}{n}{}\mathrm{ , set of clauses }S
output: 0 or 1
parameters: function select_variable_value
begin
    S := unit_propagate(Q,S)
    if S is empty then return 1
    if S contains }\square\mathrm{ then return 0
    (p,b) := select_variable_value( Q, S)
    Let Q' be obtained from Q by deleting \exists\forallp from its outermost prefix
    if }b=0\mathrm{ then }L:=\neg
        else L := p
    case (DPLL( (', S\cup{L}), \exists) of
        (0,\forall) => return 0
        (0,\exists)=> return DPLL(Q', S\cup{\overline{L}})
        (1,\forall) => return DPLL(Q', S\cup{晾})
    (1,\exists)=> return 1
end
```


Example

$\exists p \forall q \exists r$
$p \vee q \vee \neg r$
$p \vee \neg q \vee r$
$\neg p \vee q \vee r$
$\neg p \vee q \vee \neg r$

Example

Pure literal rule

Let Q be quantifier prefix and S set of clauses.
Let literal L be pure in S (i.e. \bar{L} does not occur in S) then:

- If the variable of L is existentially quantified in Q then we can remove all clauses in which L occurs.

Pure literal rule

Let Q be quantifier prefix and S set of clauses.
Let literal L be pure in S (i.e. \bar{L} does not occur in S) then:

- If the variable of L is existentially quantified in Q then we can remove all clauses in which L occurs.
- If the variable of L is universally quantified then we can remove L from all clauses where L occurs.

Pure literal rule

Let Q be quantifier prefix and S set of clauses.
Let literal L be pure in S (i.e. \bar{L} does not occur in S) then:

- If the variable of L is existentially quantified in Q then we can remove all clauses in which L occurs.
- If the variable of L is universally quantified then we can remove L from all clauses where L occurs.
Why?

Pure literal rule

Let Q be quantifier prefix and S set of clauses.
Let literal L be pure in S (i.e. \bar{L} does not occur in S) then:

- If the variable of L is existentially quantified in Q then we can remove all clauses in which L occurs.
- If the variable of L is universally quantified then we can remove L from all clauses where L occurs.
Why?
- The \exists-player will make the literal true (so all clauses containing this literal will be satisfied).

Pure literal rule

Let Q be quantifier prefix and S set of clauses.
Let literal L be pure in S (i.e. \bar{L} does not occur in S) then:

- If the variable of L is existentially quantified in Q then we can remove all clauses in which L occurs.
- If the variable of L is universally quantified then we can remove L from all clauses where L occurs.
Why?
- The \exists-player will make the literal true (so all clauses containing this literal will be satisfied).
- The \forall-player will make the literal false (so it can be removed from all clauses containing this literal).

Universal literal deletion

Consider a quantifier prefix Q and a conjunction of clauses S.

- a variable p is existential in Q, if Q contains $\exists p$.
- a variable q is universal in Q, if Q contains $\forall q$.

Universal literal deletion

Consider a quantifier prefix Q and a conjunction of clauses S.

- a variable p is existential in Q, if Q contains $\exists p$.
- a variable q is universal in Q, if Q contains $\forall q$.
- A variable p is quantified before a variable q if p occurs before q in Q.

Universal literal deletion

Consider a quantifier prefix Q and a conjunction of clauses S.

- a variable p is existential in Q, if Q contains $\exists p$.
- a variable q is universal in Q, if Q contains $\forall q$.
- A variable p is quantified before a variable q if p occurs before q in Q.
Example: If Q is $\forall q \exists p \forall r$ then q is quantified before both p and r; and p is quantified before r (in Q).

Universal literal deletion

Consider a quantifier prefix Q and a conjunction of clauses S.

- a variable p is existential in Q, if Q contains $\exists p$.
- a variable q is universal in Q, if Q contains $\forall q$.
- A variable p is quantified before a variable q if p occurs before q in Q.

Example: If Q is $\forall q \exists p \forall r$ then q is quantified before both p and r; and p is quantified before r (in Q).

Theorem

Let Q be a quantifier prefix and S a conjunction of clauses. Suppose that

1. C is a clause in S;
2. a variable q in C is universal in Q;
3. all existential variables in C are quantified before q.

Then the deletion of the literal containing q from C does not change the truth value of QS.

Universal literal deletion

Let q_{1}, \ldots, q_{m} be all universal variables of C such that all existential variables are quantified before them. Then C has the form:

$$
L_{1} \vee \ldots \vee L_{n} \vee(\neg) q_{1} \vee \ldots \vee(\neg) q_{m}
$$

Universal literal deletion

Let q_{1}, \ldots, q_{m} be all universal variables of C such that all existential variables are quantified before them. Then C has the form:

$$
L_{1} \vee \ldots \vee L_{n} \vee(\neg) q_{1} \vee \ldots \vee(\neg) q_{m}
$$

Consider the position before the q_{1}, \ldots, q_{m}-moves of the \forall-player.

Universal literal deletion

Let q_{1}, \ldots, q_{m} be all universal variables of C such that all existential variables are quantified before them. Then C has the form:

$$
L_{1} \vee \ldots \vee L_{n} \vee(\neg) q_{1} \vee \ldots \vee(\neg) q_{m}
$$

Consider the position before the q_{1}, \ldots, q_{m}-moves of the \forall-player.

- If at least one of the literals L_{1}, \ldots, L_{n} is true, deletion of $(\neg) q_{1}, \ldots,(\neg) q_{m}$ will not change the outcome of the game, since after any assignment to q_{1}, \ldots, q_{m} the clause will be true.

Universal literal deletion

Let q_{1}, \ldots, q_{m} be all universal variables of C such that all existential variables are quantified before them. Then C has the form:

$$
L_{1} \vee \ldots \vee L_{n} \vee(\neg) q_{1} \vee \ldots \vee(\neg) q_{m}
$$

Consider the position before the q_{1}, \ldots, q_{m}-moves of the \forall-player.

- If at least one of the literals L_{1}, \ldots, L_{n} is true, deletion of $(\neg) q_{1}, \ldots,(\neg) q_{m}$ will not change the outcome of the game, since after any assignment to q_{1}, \ldots, q_{m} the clause will be true.
- If all of the literals L_{1}, \ldots, L_{n} are false, the \forall-player will make all $(\neg) q_{1}, \ldots,(\neg) q_{m}$ false and win the game, so deletion of these literals will not change the outcome of the game either.

Example

$$
\exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
$$

Example

$$
\exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
$$

- Apply universal literal deletion to $p \vee \neg r$

Example

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$

Example

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation

Example

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation

Example

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r

Example

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r

Example

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r
- Apply unit propagation

Example

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s)) \Rightarrow \\
& \exists s(s \wedge \neg s)
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r
- Apply unit propagation

Example

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s)) \Rightarrow \\
& \exists s(s \wedge \neg s) \Rightarrow
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r
- Apply unit propagation

End of Lecture 15

Slides for lecture 15 end here ...

QBF and OBDD

We know how to apply boolean operations to OBDDs. Can we also apply quantification to OBDDs in a straightforward way?

QBF and OBDD

We know how to apply boolean operations to OBDDs. Can we also apply quantification to OBDDs in a straightforward way?

Quantification: given an OBDD representing a formula F, find an OBDD representing $\exists \exists_{1} p_{1} \ldots \exists \exists_{n} p_{n} F$

QBF and OBDD

We know how to apply boolean operations to OBDDs. Can we also apply quantification to OBDDs in a straightforward way?

Quantification: given an OBDD representing a formula F, find an OBDD representing $\exists \exists_{1} p_{1} \ldots \exists \exists_{n} p_{n} F$

There is no simple algorithm for quantification in general, but there is one when $\exists \forall_{1} \ldots \exists \forall_{n}$ are the same quantifier.

Quantification for OBDDs

We can use the following properties of QBFs:

- $\exists p$ (if p then F else $G) \equiv F \vee G$;
- $\forall p$ (if p then F else $G) \equiv F \wedge G$;

Quantification for OBDDs

We can use the following properties of QBFs:

- $\exists p$ (if p then F else $G) \equiv F \vee G$;
- $\forall p$ (if p then F else $G) \equiv F \wedge G$;
- If $p \neq q$, then
$\exists p$ (if q then F else $G) \equiv$ if q then $\exists v p$ else $\exists \forall p G$

ヨ-quantification algorithm for OBDDs

```
procedure }\exists\mathrm{ quant ({
parameters: global dag D
input: nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing F}\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing \exists\mp@subsup{p}{1}{}\ldots\exists\mp@subsup{p}{k}{}(\mp@subsup{F}{1}{}\vee\ldots\vee F Fm) in (modified) D
begin
    if m}=0\mathrm{ then return 0
    if some ni is 1 then return 1
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 0 then
    return \existsquant ({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}})
    p := max_var( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
    forall }i=1\ldots
    if }\mp@subsup{n}{i}{}\mathrm{ is labelled by p
        then }(\mp@subsup{l}{i}{},\mp@subsup{r}{i}{}):=(neg(\mp@subsup{n}{i}{}),\operatorname{pos}(\mp@subsup{n}{i}{})
        else (li, ri) := (ni,ni)
    if p\in{\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}}
    then return \existsquant ({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}}-{p},{\mp@subsup{I}{1}{},\ldots,\mp@subsup{I}{m}{},\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}})
    else
    k
    k}\mp@subsup{k}{2}{}:=\exists\mathrm{ quant ({p, , .., p
    return integrate( }\mp@subsup{k}{1}{},p,\mp@subsup{k}{2}{},D
end
```


Example

Take the order $p>q>r$ and the formula $\exists p \exists r(p \leftrightarrow((p \rightarrow r) \leftrightarrow q))$.

Example

\exists quant $(\{p, r\},\{a\})$

Example

\exists quant $(\{p, r\},\{a\})$
$\quad \exists q u a n t(\{r\},\{b, c\})$

Example

Example

Example

Example

Example

Example

ヨ-quantification algorithm for OBDDs

```
procedure }\exists\mathrm{ quant ({
parameters: global dag D
input: nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing F}\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing \exists\mp@subsup{p}{1}{}\ldots\exists\mp@subsup{p}{k}{}(\mp@subsup{F}{1}{}\vee\ldots\vee F Fm) in (modified) D
begin
    if m}=0\mathrm{ then return 0
    if some ni is 1 then return 1
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 0 then
    return \existsquant ({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}})
    p := max_var( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
    forall }i=1\ldots
    if }\mp@subsup{n}{i}{}\mathrm{ is labelled by p
        then }(\mp@subsup{l}{i}{},\mp@subsup{r}{i}{}):=(neg(\mp@subsup{n}{i}{}),\operatorname{pos}(\mp@subsup{n}{i}{})
        else (li, ri) := (ni,ni)
    if p\in{\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}}
    then return \existsquant ({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}}-{p},{\mp@subsup{I}{1}{},\ldots,\mp@subsup{I}{m}{},\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}})
    else
    k
    k}\mp@subsup{k}{2}{}:=\exists\mathrm{ quant ({p, , .., p
    return integrate( }\mp@subsup{k}{1}{},p,\mp@subsup{k}{2}{},D
end
```


\forall-quantification algorithm for OBDDs

```
procedure }\forall\mathrm{ quant ({p, 
parameters: global dag D
input: nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing }\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing }\forall\mp@subsup{p}{1}{}\ldots\forall\mp@subsup{p}{k}{}(\mp@subsup{F}{1}{}\wedge\ldots\wedge\mp@subsup{F}{m}{})\mathrm{ in (modified) }
begin
    if m=0 then return 1
    if some ni is 0 then return 0
    if some }\mp@subsup{n}{i}{}\mathrm{ is 1 then
    return \forallquant ({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}})
    p := max_var( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
forall }i=1\ldots
    if }\mp@subsup{n}{i}{}\mathrm{ is labelled by p
        then }(\mp@subsup{l}{i}{},\mp@subsup{r}{i}{}):=(neg(\mp@subsup{n}{i}{}),\operatorname{pos}(\mp@subsup{n}{i}{})
        else (li, ri) := (ni,ni)
    if }p\in{\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}
    then return }\forall\mathrm{ quant ({p, , .., p
    else
    k
    k}\mp@subsup{k}{2}{}:=\forallquant({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}}
    return integrate( }\mp@subsup{k}{1}{},p,\mp@subsup{k}{2}{},D
end
```

